Engineering and Technology Quarterly Reviews

ISSN 2622-9374

Published: 26 February 2020

Synthesis of Chalcones from Acetone and tetrazole and 2-acetyl naphthalene Assisted by Microwave

Bonyad Ali Moin

Bamyan University, Afghanistan

pdf download

Download Full-Text Pdf


Pages: 16-22

Keywords: Tetrazolo, Quinoline, Acetone, Condensation, Microwave Irradiation And Chalcone


In the present study, we understood the total synthesis one chalcone derivative via Claisen-Schmidt condensation of the respective aldehydes and ketones using Microwave assisted irradiation method. In the microwave environment, chemical reactions usually proceed faster and give higher yields with fewer by- products. In the synthesis, a common aldehyde namely tetrazolo {1, 5-a} quinoline-4-carbaldehyde was used while the ketones used were respectively acetone, 2- acetyl Naphthalene. The Chalcone synthesised from Tetrazolo {1, 5-a} quinolone-4-carbaldehyde and acetone was 4-(tetrazolo {1, 5-a} quinoline-4-yl) but -3-en-2-one. The Chalcone synthesised from Tetrazolo {1, 5-a} quinoline-4-carbaldehyde and 2-acetyl Naphthalene was 2E-1-(naphthalene-2-yl)-3-(tetrazolo {1, 5-a} quinolone-4-yl) prop-2-en-1- one. The starting aldehyde was Tetrazolo {1, 5-a} quinoline-4-carbaldehyde necessary for the Claisen-Schmidt condensation was in turn synthesized from Acetanilide which and Vilsmeier reagent (DMF and PoCl3) to produce the intermediate compound 2-chloroquinoline-3-carbaldehyde. This intermediate 2-chloroquinoline-3-carbaldehyde was then treated with sodium azide and acetic acid with ethanol as solvent to produce Tetrazolo {1, 5-a} quinoline-4-carbaldehyde. Structure of the compound were confirmed by spectral data such as IR and 1H-NMR.


  1. Affan, M. A., Siong W, F., Jusoh, I., Hanapi, S., Edward R.T. Teikink. (2009). Synthesis, Characterization and biological studies of organotin (5) complexes with hydraone ligand. Inorganica Chimica Acta. 362: 5031 -5037.
  2. Avila, H.P., Albino Smania, E. D. F., Monache, F. D., Smania Junior, A. (2008). Structure-activity relationship of antibacterial chalcones. Bioorganic & Medicinal Chemistry. 16: 9790-9794.
  3. Bennet, M., Burke. A. J., Ivo O’Sullivan, I, W. (1996). Aspects of the Algar- Flynn- Oyamada (AFO) Reaction. Tetrahedron. Vol. 52: 7163-7178.
  4. Black, W. B and Lutz, R. E. (1954). Ultraviolet Absorption Spectra of Chalcones. Identification of Chromophorses. 77: 5134-5140.
  5. Bohm, A. B. (998). Introduction to Flavonoids, Harwood Academic Pub, London, pg. 243-284.
  6. Chaudhuri, M. K., Khan, A. T., and Patel, B. K. (1998). An Environmentally benign synthesis of organic ammonium tribromides (OATB) and bromination of selected organic substrate by tetrabutylammonium tribromide (TBATB). Tet letts., 39: 8163-8166.
  7. Climet, M. J., Corma, A., Iborra, S., Velty, A. (2004). Activated hydrotalcites as catalyst for the synthesis of Chalcones of Pharmaceutical interest. J Catal. 221: 474-482.
  8. Dhar, D. N. and Jal, J.B. (1958). Chalcones: condensation of aromatic aldehydes with resacetophenone 2. Chalcone 2: 1159-1161.
  9. Edrari, S., Cotelle, N., Bakkaour, Y., Ronaldo, C. (2003). An efficient synthesis of Chalcones Based on the Suzuki Reaction. Tet. Letts. 44: 5359-5363.
  10. Fresneda P. M., Molina P., and Sanz M.A., Synlett, 2, 2001, 218.
  11. Fukie, K., Matsumoto, T., Nakamura, S., and Nakayama, M. (1968). Synthesis studies of the flavone derivativs. 7. The synthesis of Jaceidin. Bulletin of the Chemical Society of Japan.
  12. Ganguly, A., Mahat, P. K., Biswas, D., pramanik, B. N., Chan T. M. (2005). Synthesis and Propeties of 3-Acetyl-γ-pyrones, A Novel Class of Flavones and Chromones. Tet. Letts. 46: 4119-4121.
  13. Hampford Research Inc. (2009). Technical data sheet, dibromochalcone. {Brochure}. Stratford, CT.
  14. Jamil, S., Mohd Sirat, H., Jantan, I., Aimi, N., Kitajima, M. (2008). A new prenylated dihydrochalcone from the leaves of Artocarpus lowii, Journal of Natural medicine. 62: 321-324.
  15. Khajavi M. S., Moghadam K.R., and Hazarkhani H., synth. Commun. 29. 1999, 2617.
  16. Marins M.A.P., Beck P., Cunico W., Pereira C.M.P Sinhorin A.P., Blanco R.F., Peres R., Boncorso H.G., and Zanatta N., Tet. Lett. 43. 2002, 7005.
  17. Nakanishi, K. (1975). Natural Products Chemistry. 2. Tokyo: Kodansha Ltd. 225- 228.
  18. Petrov, O., Ivanova, Y., Gerova, M. (2008). SOCl2/EtOH: Catalytic system for synthesis of Chalcones. Catalysis Communication. 9: 3150316.
  19. Rajendra, V.R. (1999). Solvent-free organic synthesis using supported reagents and microwave irradiation. Green Chemistry. Pg.: 43-55.
  20. Srivastava, Y.K. Eco-friendly Microwave Assisted Synthesis of Some Chalcones. Rasayan J. chem. 1: 884-886.
  21. Zhou J.F., Hua Xue Yan Jiu Yu Ying Yong, 13, 2001,712.

About Us

The Asian Institute of Research is an online and open-access platform to publish recent research and articles of scholars worldwide. Founded in 2018 and based in Indonesia, the Institute serves as a platform for academics, educators, scholars, and students from Asia and around the world, to connect with one another. The Institute disseminates research that is proven or predicted to be of significant influence for the general public.

Contact Us

Please send all inquiries to the email:

Business Address:

5th Floor, Kavling 507, Fajar Graha Pena Tower, Jl. Urip Sumohardjo No.20, Makassar, Indonesia 90234

Copyright © 2018 The Asian Institute of Research. All rights reserved

Stay Connected

  • Instagram - Black Circle
  • Facebook - Black Circle
  • LinkedIn - Black Circle