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Abstract 

Structural Health Monitoring (SHM) is essential for building safety, durability, and functionality. Buildings, as 

key components of the built environment, suffer from cracking, spalling, corrosion, and moisture damage. 

Traditional SHM approaches like vibration-based measurements, non-destructive testing (NDT), and manual 

inspections are reliable. However, they are expensive, slow, and difficult to use at scale. Recent developments in 

computer vision (CV), powered by advances in machine learning (ML) and deep learning (DL), have enabled 

modern, automated, and contactless inspection systems capable of detecting structural defects with high precision. 

This paper reviews the state of the art in computer vision applications for SHM of buildings. It focuses on the 

evolution of image processing, ML and DL architectures, and new 3D and multimodal systems. The paper 

categorizes common building defects, lists datasets for algorithm training and validation, and gives examples from 

recent studies. Finally, the review identifies current obstacles and suggests future research directions. It focuses 

on integration with drones, Building Information Modelling (BIM), the Internet of Things (IoT), and Digital Twin 

technologies. 

 

Keywords: Structural Health Monitoring, Computer Vision, Deep Learning, Defect Detection, Buildings, Civil 

Engineering 

 

 

1. Introduction 

 

Ensuring the safety and long-term performance of civil engineering structures is one of the fundamental goals of 

structural engineering practice. Among these structures, buildings represent the backbone of the built environment, 

accommodating residential, commercial, educational, and industrial activities. Preserving their integrity and 

reliability throughout their service life is therefore a matter of public safety, economic value, and social well-being. 

 

Structural Health Monitoring (SHM) has become a multidisciplinary approach dedicated to assessing the condition 

of structures, identifying early signs of deterioration, and supporting decisions regarding maintenance and 

rehabilitation. Its ultimate objective is to extend the service life of structures, reduce life-cycle costs, and improve 

their resilience against natural or anthropogenic hazards (Farrar & Worden, 2012). 
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Conventional SHM practices rely heavily on non-destructive testing (NDT) techniques such as ultrasonic pulse 

velocity, infrared thermography, rebound hammer testing, and strain gauge measurements, often complemented 

by manual visual inspections. While these methods are well established, they also face inherent limitations: manual 

inspections are time-consuming and subjective, whereas sensor-based systems require extensive setup, calibration, 

and maintenance, which increase operational costs. 

 

In recent years, the convergence of computer vision (CV), machine learning (ML), and deep learning (DL) has 

triggered a paradigm shift in how structural health can be monitored. With the availability of high-resolution 

cameras, affordable unmanned aerial vehicles (UAVs), and increasingly powerful computational tools, vision-

based systems have made it possible to perform scalable, automated, and non-contact inspections. These systems 

are particularly suitable for buildings, where most degradation processes—such as cracks or spalling—are visually 

perceptible and can be effectively analysed using digital imagery (Spencer et al., 2025; Zhuang et al., 2025). 

 

The present paper aims to provide a comprehensive synthesis of computer vision applications in building SHM. 

The main contributions are as follows: 

• Methodological overview: A detailed summary of computer vision approaches ranging from traditional image 

processing to deep learning and multimodal frameworks used for defect detection. 

• Application-oriented review: An examination of practical case studies focusing on typical building defects 

such as cracks, spalling, corrosion, and moisture damage. 

• Research perspectives: A discussion of current challenges and future directions, including integration with 

BIM, IoT, and Digital Twin environments. 

 

2. Fundamentals of Structural Health Monitoring 

 

2.1 Definition and Objectives 

 

It is both conventional and expedient to divide the Method section into labeled subsections. These usually include 

a section with descriptions of the participants or subjects and a section describing the procedures used in the study. 

The latter section often includes description of (a) any experimental manipulations or interventions used and how 

they were delivered-for example, any mechanical apparatus used to deliver them; (b) sampling procedures and 

sample size and precision; (c) measurement approaches (including the psychometric properties of the instruments 

used); and (d) the research design. If the design of the study is complex or the stimuli require detailed description, 

additional subsections or subheadings to divide the subsections may be warranted to help readers find specific 

information.  

 

Include in these subsections the information essential to comprehend and replicate the study. Insufficient detail 

leaves the reader with questions; too much detail burdens the reader with irrelevant information. Consider using 

appendices and/or a supplemental website for more detailed information. 

 

Structural Health Monitoring (SHM) refers to the continuous or periodic observation of a structure through the 

acquisition and interpretation of data obtained from sensors, measurements, or visual inputs. Its purpose is to assess 

the current condition of a structure, detect potential damage, and predict its future performance. The concept of 

SHM emerged in the late 20th century as an evolution of traditional Non-Destructive Evaluation (NDE), shifting 

the focus from localized inspections toward global and continuous assessments (Sohn et al., 2001; Farrar & 

Worden, 2007). 

 

In the case of buildings, SHM serves several essential objectives: 

• Safety: Detecting early signs of damage before structural integrity is compromised. 

• Serviceability: Ensuring that the building continues to perform its intended function effectively. 

• Lifecycle management: Supporting preventive maintenance and timely repairs to extend service life. 

• Post-event assessment: Providing rapid evaluations following earthquakes, fires, or extreme weather 
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conditions. 

 

An effective SHM system thus provides engineers and facility managers with actionable information that enables 

data-driven decision-making and enhances the reliability of the built environment throughout its life cycle. 

 

2.2 Traditional SHM Methods 

 

Before the emergence of vision-based approaches, SHM systems relied primarily on three categories of methods: 

vibration-based measurements, non-destructive testing (NDT), and manual inspections. 

 

Vibration-Based Methods - These techniques are founded on the principle that structural damage modifies the 

dynamic properties of a system—such as its natural frequencies, damping ratios, or mode shapes (Doebling et al., 

1996). Accelerometers and strain gauges are typically employed to record such variations, especially in tall 

buildings or after seismic events. Advantages: sensitive to global damage and useful for dynamic behaviour 

assessment. Limitations: require dense sensor networks, complex modal analysis, and are less effective for 

localized surface-level defects. 

 

Non-Destructive Testing (NDT) - Techniques including ultrasonic pulse velocity, infrared thermography, and 

rebound hammer testing are widely applied for localized inspections and subsurface assessment. Advantages: high 

precision in identifying internal or material-level damage. Limitations: labour-intensive, dependent on specialized 

equipment, and difficult to scale for large areas. 

 

Manual Visual Inspection  - Still the most common method in practice, manual inspection relies on the experience 

of engineers or inspectors who visually examine accessible parts of the structure. Advantages: straightforward, 

inexpensive, and does not require complex instrumentation. Limitations: subjective, time-consuming, and limited 

by accessibility and safety conditions. 

 

While these traditional techniques remain valuable, their use on a large scale is constrained by high operational 

costs, potential human bias, and limited scalability (Balageas et al., 2006). The increasing complexity and ageing 

of urban infrastructure have made the need for more automated and efficient monitoring approaches evident. 

 

2.3 Computer Vision vs. Conventional Methods  

 

Over the last decade, computer vision (CV) has emerged as a promising alternative and complement to traditional 

SHM methods. Unlike sensor-based systems that depend on physical contact, CV relies on visual data—images 

or videos—acquired using cameras placed on tripods, handheld devices, or unmanned aerial vehicles (UAVs). 

 

Main advantages of CV-based SHM include: non-contact monitoring; cost efficiency as cameras and UAVs 

become affordable; scalability for inspecting large façades or multiple structures; automation through ML/DL 

algorithms; and integration potential with BIM and Digital Twin platforms. Limitations include sensitivity to 

lighting and environmental factors, dependence on image quality, the need for large annotated datasets, and the 

difficulty of detecting subsurface defects without complementary NDT methods. 

 

Despite these drawbacks, numerous studies indicate that CV-based techniques are maturing rapidly. In many cases, 

they now outperform conventional methods in terms of efficiency, automation, and scalability (Hoskere et al., 

2018; Dong & Catbas, 2018). Hybrid frameworks that combine sensor data and vision analytics are also emerging 

as a balanced approach for comprehensive SHM (Mardanshahi et al., 2025). 

 

2.4 Summary  

 

The evolution of SHM represents a shift from localized, sensor-dependent evaluations toward image-based and 

data-driven methodologies. Traditional methods continue to play an important role, especially for subsurface 

defect analysis. However, computer vision provides major advantages in scalability, automation, and cost 
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reduction. Given that most building defects—such as cracks, corrosion, or spalling—manifest on visible surfaces, 

vision-based systems are naturally suited to this domain. 

 

3. Computer Vision Techniques for SHM 

 

Computer Vision (CV) has become an increasingly important tool in Structural Health Monitoring (SHM) because 

it can extract relevant information from visual data and automate structural defects identification. Over the past 

two decades, CV techniques have evolved from classical image processing to advanced machine learning (ML) 

and deep learning (DL) methods, bringing substantial improvements in accuracy, robustness, and scalability. 

 

3.1 Image Processing Techniques 

 

Early vision-based SHM systems relied mainly on traditional image processing algorithms designed to enhance 

visible defects—such as cracks, spalling, or discoloration—by analysing variations in pixel intensity and texture. 

Common approaches include edge detection (e.g., Canny, Sobel), thresholding (e.g., Otsu), morphological 

operations (erosion, dilation, skeletonization), and texture analysis (GLCM). These methods are efficient and easy 

to implement, but are sensitive to lighting variations, surface textures, and noise. For instance, stains or paint 

patterns may be misclassified as cracks. Parrany et al. (2022) showed that with careful tuning, classical methods 

can still perform well under variable lighting. Today, image processing is often used as a preprocessing stage 

rather than a standalone detector. 

 

3.2 Machine Learning Approaches 

 

As labelled datasets became more available, machine learning (ML) methods emerged as a data-driven alternative 

to handcrafted rules. Algorithms such as Support Vector Machines (SVM), k-Nearest Neighbours (k-NN), and 

ensemble methods like Decision Trees and Random Forests classify patterns associated with defects using 

engineered features (e.g., HOG, LBP, wavelets). ML models are more flexible than classical image processing but 

depend strongly on feature quality and data diversity. Jahanshahi & Masri (2012) demonstrated an SVM-based 

system for crack detection in reinforced concrete with robust results in practical settings. 

 

3.3 Deep Learning Approaches 

 

Deep Learning (DL) has transformed CV applications in SHM by learning hierarchical features directly from raw 

images. Major architectures include classification networks (AlexNet, VGG, ResNet), object detection 

frameworks (Faster R-CNN, YOLO, SSD), segmentation models (U-Net, SegNet, Mask R-CNN), and 

transformer-based models (Vision Transformers and hybrid CNN–Transformer designs). DL offers high accuracy 

and robustness but requires large annotated datasets and considerable computation, and may struggle to generalize 

to unseen conditions (Zhang et al., 2018). Cha et al. (2017) achieved >98% crack detection accuracy using CNNs; 

Yasmin et al. (2023) demonstrated effective spalling detection via deep segmentation. Reviews by Cha et al. (2024) 

and Gao et al. (2023) underline DL’s dominant role in current SHM research. 

 

3.4 3D Vision and Multi-Modal Approaches 

 

Beyond 2D imagery, 3D vision and multimodal systems combine visual, geometric, and thermal information for 

richer assessment. Photogrammetry and Structure-from-Motion reconstruct 3D façade models onto which defects 

can be mapped. LiDAR–CV integration enables accurate geometry and spatial localization (Tang et al., 2010; 

Olsen et al., 2010). Depth sensors (e.g., RGB-D) assist in detecting spalling and surface deformation, while RGB–

thermal fusion supports moisture and subsurface defect identification. These benefits come with higher equipment 

costs and more complex data processing pipelines. 

 

3.5 Summary 

 

Computer vision for SHM has progressed from pixel-based processing to deep learning and multimodal 3D 

frameworks. While classical processing remains valuable for enhancement and preprocessing, DL currently leads 
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in automation and precision. Integrating LiDAR, 3D reconstruction, and thermal imaging paves the way for hybrid 

monitoring systems that merge visual, geometric, and physical data. 

 

4. Applications in Buildings 

 

The adoption of CV for SHM in buildings has accelerated due to the prevalence of surface-visible defects and the 

practicality of image-based methods. Yet, challenges such as variable textures, illumination, and limited access—

particularly for high-rise façades—persist. This section reviews typical building defects and representative case 

studies. 

 

4.1 Typical Defects in Buildings 

 

4.1.1 Cracks in Concrete and Masonry  

 

Cracks arise from shrinkage, thermal effects, settlement, overloading, or seismic actions. Although fine cracks 

may be superficial, their propagation can affect serviceability and safety. Detection approaches include classical 

edge-based and thresholding methods (Yamaguchi & Hashimoto, 2010), DL models (e.g., CNNs) with accuracies 

above 95% (Cha et al., 2017), and emerging Vision Transformers that improve robustness to lighting and noise. 

 

4.1.2 Spalling of Concrete  

 

Spalling involves the flaking or detachment of concrete cover, often exposing reinforcement and accelerating 

corrosion. DL-based segmentation (U-Net, Mask R-CNN) on RGB images is widely used (Yasmin et al., 2019). 

Combining RGB with depth or 3D photogrammetry improves quantification of depth and extent. UAV imaging is 

practical for upper façades and difficult-to-reach areas. 

 

4.1.3 Corrosion of Reinforcement and Metallic Components  

 

Corrosion reduces the cross-sectional area of steel elements, leading to capacity loss. Colour-based segmentation 

using hue/saturation and DL models trained on corrosion datasets have shown strong performance (Gao & 

Mosalam, 2018). Infrared–RGB fusion can reveal corrosion beneath coatings in some scenarios. 

 

4.1.4 Moisture and Water-Induced Damage 

 

Moisture ingress leads to staining, efflorescence, biological growth, and coating delamination. Thermal infrared 

combined with CV detects temperature anomalies linked to moisture; RGB methods capture discoloration, and 

CNNs improve robustness. Linking moisture maps with BIM facilitates preventive maintenance planning. 

 

4.2 Case Studies from Literature 

 

4.2.1 UAV-Based High-Rise Façade Inspection 

 

Dorafshan et al. (2018) compared edge-based crack detection with CNNs on UAV imagery, finding higher 

accuracy and faster inspection using deep learning—improving safety and efficiency in façade assessments. 

 

4.2.2 Deep Learning for Crack Detection in Walls 

 

Cha et al. (2017) developed a CNN-based framework for detecting cracks on concrete surfaces, achieving accuracy 

above 98% and demonstrating feasibility for real inspections. 

 

4.2.3 UAV Inspection with Infrared and Visual Imaging 

 



Asian Institute of Research               Engineering and Technology Quarterly Reviews Vol.8, No.2, 2025 

 40 

UAVs equipped with RGB and infrared cameras effectively assess building envelopes. Thermal imagery identifies 

insulation defects and moisture ingress, while RGB supports detailed crack analysis (Fox et al., 2016; Hoskere et 

al., 2018). 

 

4.2.4 Crack Mapping Using Fully Convolutional Networks (FCNs) 

 

Dung & Anh (2019) proposed an FCN for pixel-level crack segmentation, enabling quantitative evaluation and 

monitoring of crack evolution. 

 

4.2.5 Spalling Detection in Reinforced Concrete Buildings 

 

Yasmin et al. (2023) applied deep segmentation for spalling detection and, by incorporating depth information, 

estimated severity as well as extent. 

 

4.2.6 Transfer Learning for Corrosion Recognition 

 

Gao & Mosalam (2018) used deep transfer learning to recognize corrosion in reinforced concrete, showing that 

pre-trained CNNs can perform well even with limited training data. 

 

4.2.7 BIM-Integrated Computer Vision for Maintenance 

 

Brilakis et al. (2010) integrated CV-based defect detection with BIM, mapping defects onto 3D models to support 

predictive maintenance. Recent work extends this toward Digital Twin frameworks (Xu et al., 2023). 

 

4.2.8 Hybrid Thermal and RGB Imaging for Moisture Detection 

 

Fox et al. (2016) combined thermal and RGB imaging to detect moisture-induced deterioration, providing early 

warning of insulation failures and potential mould growth. 

 

4.2.9 Post-Earthquake Building Assessment 

 

Zhuang et al. (2025) developed a deep learning framework for post-earthquake damage classification with 96.1% 

accuracy, using Grad-CAM for interpretability and prioritization in emergency response. 

 

4.3 Summary 

 

CV applications in building SHM span cracks, spalling, corrosion, and moisture-related defects. Field studies, 

including UAV-based inspections, confirm gains in efficiency and safety. Persistent challenges include 

environmental variability, dataset standardization, and multimodal integration. Addressing these is key to robust, 

scalable, automated monitoring. 

 

5. Datasets and Benchmarks 

 

The performance and reliability of CV techniques for SHM depend on dataset quality and diversity. Large, well-

annotated datasets are essential for robust ML/DL models capable of handling varied materials, defect types, and 

conditions. 

 

5.1 Importance of Datasets in CV – based SHM 

 

DL algorithms rely on large labelled datasets to achieve generalizable performance. Ideal SHM datasets include 

multiple defect categories (cracks, spalling, corrosion, moisture), various materials (concrete, masonry, steel), and 

diverse environmental conditions. Without such diversity, models overfit and fail in new scenarios (Zhang et al., 

2018; Özgenel, 2018). Dataset creation is hindered by manual annotation effort, class imbalance, and limited 

diversity. 
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5.2 Publicly Available Datasets 

 

5.2.1 CrackForest Dataset (CFD) 

 

Originally for road surfaces, CrackForest (Shi et al., 2016) includes 118 annotated concrete images with pixel-

level crack labels and is widely reused for building studies. 

 

5.2.2 SDNET2018 

 

SDNET2018 (Dorafshan et al., 2018) provides over 56,000 images of decks, walls, and pavements under diverse 

conditions. Though bridge-oriented, its vertical imagery suits façade inspection. 

 

5.2.3 Concrete Crack Dataset (Özgenel, 2018) 

 

Comprising 40,000 cropped patches labelled as crack/non-crack, this dataset is common for binary CNN training, 

though it lacks pixel-level annotations for segmentation. 

 

5.2.4 Masonry Crack Dataset (MCD) 

 

MCD (Dung & Anh, 2019) targets masonry walls and heritage buildings with labelled cracked and intact regions—

useful beyond concrete, albeit smaller in scale. 

 

5.2.5 Additional Specialized Datasets 

 

Thermal datasets (moisture, subsurface defects) are often proprietary. Small corrosion datasets (e.g., Gao & 

Mosalam, 2018) support transfer learning. Spalling datasets exist but lack a standard public benchmark. 

 

5.3 Benchmarking Practices 

 

Common metrics: Accuracy and F1-score (classification), IoU (segmentation/localization), Precision–Recall 

(class imbalance), and FPS (real-time/UAV contexts). Comparisons across studies are difficult due to differing 

datasets, preprocessing, and protocols; the field lacks ImageNet-like standardized benchmarks (Hoskere et al., 

2018). 

 

5.4 Limitations of Current Datasets 

 

Key limitations: small scale and narrow scope (focus on cracks), limited diversity (materials, lighting, weather), 

inconsistent annotation formats, and restricted access to industry data. These hinder generalization and slow 

progress toward deployable SHM systems. 

 

5.5 Summary 

 

Public datasets such as CrackForest, SDNET2018, and Özgenel’s collection have shaped SHM research, but 

broader, multi-defect, multimodal datasets are needed. Standardized benchmarks and open challenges would 

accelerate progress and improve reproducibility. 

 

6. Challenges and Future Directions 

 

CV enables efficient, automated, non-contact SHM for buildings, yet adoption in practice is limited by 

environmental sensitivity, data scarcity, generalization issues, and computational demands. Concurrently, 

advances in AI, sensing, and digital construction create new opportunities. 

 

6.1 Current Challenges 
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6.1.1 Environmental Sensitivity 

 

Algorithms are sensitive to lighting, shadows, textures, and weather. Crack detection suffers under uneven 

illumination or stain-like backgrounds, limiting robustness (Chen et al., 2017). 

 

6.1.2 Data Limitations 

 

Large, diverse labelled data are scarce for buildings; popular datasets emphasize cracks. Models trained on one 

dataset often generalize poorly due to bias (Dong & Catbas, 2018). 

 

6.1.3 Generalization and Transferability 

 

Performance drops when moving from lab to field because of changing textures and lighting. Transfer learning 

and domain adaptation help but remain underexplored in SHM (Gao & Mosalam, 2018). 

 

6.1.4 Integration with Structural Engineering Knowledge 

 

Many CV systems lack explicit links between visual detections and structural significance (e.g., load paths, safety 

margins). Tighter coupling with mechanics would improve interpretability and usefulness (Hoskere et al., 2018). 

 

6.1.5 Computational Demands and Real-Time Operation 

 

Training and inference are resource-intensive, challenging real-time UAV deployments. Lightweight, energy-

efficient models for edge devices are an active research area. 

6.2 Integration with Emerging Technologies 

 

6.2.1 Unmanned Aerial Vehicles (UAVs) 

 

UAVs provide rapid, safe access to façades, roofs, and hard-to-reach zones. With RGB/IR/depth sensors, they 

capture high-resolution data at scale; paired with CV, they enable automated, repeatable monitoring (Dorafshan et 

al., 2018). 

 

6.2.2 Internet of Things (IoT) and Wireless Sensor Networks 

 

Hybrid SHM merges visual data with strain, vibration, and humidity sensing via IoT platforms, enabling richer 

diagnostics and multi-sensor fusion (Seo et al., 2015). 

 

6.2.3 Building Information Modeling (BIM) and Digital Twins 

 

CV detections can be mapped onto BIM for spatial records and maintenance planning. Digital Twins link physical 

assets to virtual models for real-time visualization, simulation, and prediction (Brilakis et al., 2010; Torzoni et al., 

2024; Sun et al., 2025). 

 

6.2.4 Augmented and Virtual Reality (AR/VR) 

 

AR/VR enhances on-site decision-making by overlaying defect information on real scenes, enabling access to 

historical records and facilitating repair simulations. 

 

6.3 Research Gaps and Future Trends 

 

Promising directions include: large, multi-defect open datasets; compact models for edge/UAV deployment; self-

supervised and semi-supervised learning to reduce labelling needs; explainable AI to link visual cues with 
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structural behaviour; integration with lifecycle asset management; and advanced transformer-based architectures 

(Hu et al., 2025) for context-aware analysis. 

 

6.4 Summary 

Despite clear benefits, CV-based SHM faces barriers related to data, environment, and computation. Progress will 

rely on tighter integration with UAVs, IoT, BIM, and Digital Twins, along with explainable, lightweight AI 

models. These advances will shift practice from reactive inspection to proactive, predictive maintenance. 

 

7. Conclusions 

 

Structural Health Monitoring (SHM) plays a vital role in ensuring the safety, functionality, and durability of 

buildings throughout their service life. Traditional inspection methods—such as manual surveys, non-destructive 

testing (NDT), and sensor-based systems—have served the profession effectively for decades, yet their limitations 

in cost, scalability, and subjectivity motivate more automated solutions. Computer vision (CV) enables non-

contact, efficient, and scalable monitoring. 

 

This review summarized computer vision–based SHM approaches for buildings, covering foundational concepts, 

methods from classical image processing to deep learning and multimodal 3D systems, applications to typical 

defects, datasets and benchmarking practices, and key challenges with future directions. DL models—especially 

CNNs and segmentation networks—currently offer the most accurate detection and quantification of surface 

defects. Field studies confirm the maturity and feasibility of CV-based inspections. 

 

 

While public datasets such as CrackForest, SDNET2018, and Özgenel’s collection have accelerated progress, 

broader, standardized multi-defect datasets are needed for fair comparison and reproducibility. Future 

development will likely be shaped by integration with UAVs, IoT, BIM, and Digital Twins, together with advances 

in explainable, lightweight AI. 

 

 

By leveraging modern AI, multimodal sensing, and digital construction workflows, CV-based SHM can deliver 

accurate, real-time, and cost-efficient assessments—supporting a shift from reactive inspection to proactive, 

predictive maintenance. This review aims to serve researchers and practitioners as a concise reference and to 

encourage scalable frameworks for smart, resilient, and sustainable cities. 

 

 

Author Contributions: All authors contributed to this research. 

 

Funding: Not applicable. 

 

Conflicts of Interest: The authors declare no conflict of interest. 

 

Informed Consent Statement/Ethics approval: Not applicable.  

 

Declaration of Generative AI and AI-assisted Technologies: The authors declare that ChatGPT (OpenAI, GPT-

5 model) was used to assist in language refinement and editing of the manuscript. The use of this tool was limited 

to improving clarity, coherence, and consistency of expression. The authors reviewed and approved all content 

prior to submission and take full responsibility for the scientific integrity and accuracy of the manuscript. 

 

 

References  

 

Balageas, D., Fritzen, C. P., & Güemes, A. (2006). Structural health monitoring. John Wiley & Sons. 



Asian Institute of Research               Engineering and Technology Quarterly Reviews Vol.8, No.2, 2025 

 44 

Brilakis, I., Lourakis, M., Sacks, R., Savarese, S., Christodoulou, S., Teizer, J., & Makhmalbaf, A. (2010). Toward 

automated generation of parametric BIMs based on hybrid video and laser scanning data. Advanced 

Engineering Informatics, 24(4), 456–465. https://doi.org/10.1016/j.aei.2010.06.006. 

Cha, Y. J., Ali, R., Lewis, J., Büyüköztürk, O. (2024). Deep learning-based structural health monitoring. 

Automation in Construction, 161, 105328. https://doi.org/10.1016/j.autcon.2024.105328. 

Cha, Y. J., Choi, W., & Büyüköztürk, O. (2017). Deep learning-based crack detection using convolutional neural 

networks. Computer-Aided Civil and Infrastructure Engineering, 32(5), 361–378. 

https://doi.org/10.1111/mice.12263. 

Chen, F. C., Jahanshahi, M. R., Wu, R. T., & Joffre, C. (2017). A texture-based video processing methodology 

using Bayesian data fusion for autonomous crack detection on metallic surfaces. Computer-Aided Civil and 

Infrastructure Engineering, 32(4), 271–287. https://doi.org/10.1111/mice.12256. 

Doebling, S. W., Farrar, C. R., Prime, M. B., & Shevitz, D. W. (1996). Damage identification and health 

monitoring of structural and mechanical systems from changes in their vibration characteristics: A literature 

review. Los Alamos National Laboratory Report LA-13070-MS. https://doi.org/10.2172/249299. 

Dong, C. Z., & Catbas, F. N. (2020). A review of computer vision–based structural health monitoring at local and 

global levels. Structural Health Monitoring, 20(2). https://doi.org/10.1177/1475921720935585. 

Dorafshan, S., Thomas, R. J., & Maguire, M. (2018). SDNET2018: An annotated image dataset for non-contact 

concrete crack detection using deep convolutional neural networks. Data in Brief, 21, 1664–1668. 

https://doi.org/10.1016/j.dib.2018.11.015. 

Dorafshan, S., Thomas, R. J., & Maguire, M. (2018). Comparison of deep convolutional neural networks and edge 

detectors for image-based crack detection in concrete. Construction and Building Materials, 186, 1031–1045. 

https://doi.org/10.1016/j.conbuildmat.2018.08.011. 

Dung, C. V., & Anh, L. D. (2019). Autonomous concrete crack detection using deep fully convolutional neural 

networks. Automation in Construction, 99, 52–58. https://doi.org/10.1016/j.autcon.2018.11.028. 

Farrar, C. R., & Worden, K. (2007). An introduction to structural health monitoring. Philosophical Transactions 
of the Royal Society A, 365(1851), 303–315. https://doi.org/10.1098/rsta.2006.1928. 

Farrar, C. R., & Worden, K. (2012). Structural health monitoring: A machine learning perspective. John Wiley & 

Sons. 

Fox, M., Goodhew, S., & De Wilde, P. (2016). Building defect detection: External versus internal thermography. 

Building and Environment, 105, 317–331. https://doi.org/10.1016/j.buildenv.2016.06.011. 

Gao, Y., & Mosalam, K. M. (2018). Deep transfer learning for image-based structural damage recognition. 

Computer-Aided Civil and Infrastructure Engineering, 33(9), 748–768. https://doi.org/10.1111/mice.12363. 

Gao, Y., Xu, W., Yang, J., Qian, H., Mosalam, K. M. (2023). Multiattribute multitask transformer framework for 

vision-based structural health monitoring. Computer-Aided Civil and Infrastructure Engineering, 38(12), 

1578–1596. https://doi.org/10.1111/mice.13067. 

Hoskere, V., Narazaki, Y., Hoang, T. A., & Spencer, B. F. (2018). Vision-based structural inspection using 

Multiscale Deep Convolutional Neural Networks. 3rd Huixian International Forum on Earthquake 

Engineering for Young Researchers, University of Illinois, Urbana-Champaign. 

https://doi.org/10.48550/arXiv.1805.01055. 

Hu, D., Lin, Y., Li, S., Wu, J., & Ma, H. (2025). Hierarchical attention transformer-based sensor anomaly detection 

in structural health monitoring. Sensors, 25(16), 4959. https://doi.org/10.3390/s25164959. 

Jahanshahi, M. R., & Masri, S. F. (2012). Adaptive vision-based crack detection using 3D scene reconstruction 

for condition assessment of structures. Automation in Construction, 22, 567–576. 

https://doi.org/10.1016/j.autcon.2011.11.018. 

Mardanshahi, A., Sreekumar, A., Yang, X., Barman, S. K., & Chronopoulos, D. (2025). Sensing Techniques for 

Structural Health Monitoring: A State-of-the-Art Review on Performance Criteria and New-Generation 

Technologies. Sensors, 25(5), 1424. https://doi.org/10.3390/s25051424. 

Olsen, M. J., Kuester, F., Chang, B. J., & Hutchinson, T. C. (2010). Terrestrial laser scanning-based structural 

damage assessment. Journal of Computing in Civil Engineering, 24(3), 264–272. 

https://doi.org/10.1061/(ASCE)CP.1943-5487.0000028. 

Özgenel, Ç. F. (2018). Concrete crack images for classification. Mendeley Data, V1. 

https://doi.org/10.17632/5y9wdsg2zt.1. 

Park, J. S., Joohyun, A., & Park, H. S. (2023). Computer Vision-based Structural Health Monitoring: A Review. 

International Journal of High-Rise Buildings, 12(4), 321–333. 

https://doi.org/10.21022/IJHRB.2023.12.4.321. 

Parrany, R., Yazdani, N., & Dey, S. (2022). A new image processing strategy for surface crack identification in 

building structures under non-uniform illumination. IET Image Processing, 16(2), 407–415. 

https://doi.org/10.1049/ipr2.12357. 

Pan, X., Yang, T. T. Y., Li, J., Ventura, C., Málaga-Chuquitaype, C., Li, C., Su, R. K. L., & Brzev, S. (2025). A 

review of recent advances in data-driven computer vision methods for structural damage evaluation: 

algorithms, applications, challenges, and future opportunities. Archives of Computational Methods in 

Engineering. https://doi.org/10.1007/s11831-025-10279-8. 

https://doi.org/10.1016/j.aei.2010.06.006
https://doi.org/10.1016/j.autcon.2024.105328
https://doi.org/10.1111/mice.12263
https://doi.org/10.1111/mice.12256
https://doi.org/10.2172/249299
https://doi.org/10.1177/1475921720935585
https://doi.org/10.1016/j.dib.2018.11.015
https://doi.org/10.1016/j.conbuildmat.2018.08.011
https://doi.org/10.1016/j.autcon.2018.11.028
https://doi.org/10.1098/rsta.2006.1928
https://doi.org/10.1016/j.buildenv.2016.06.011
https://doi.org/10.1111/mice.12363
https://doi.org/10.1111/mice.13067
https://doi.org/10.48550/arXiv.1805.01055
https://doi.org/10.3390/s25164959
https://doi.org/10.1016/j.autcon.2011.11.018
https://doi.org/10.3390/s25051424
https://doi.org/10.1061/(ASCE)CP.1943-5487.0000028
https://doi.org/10.17632/5y9wdsg2zt.1
https://doi.org/10.21022/IJHRB.2023.12.4.321
https://doi.org/10.1049/ipr2.12357
https://doi.org/10.1007/s11831-025-10279-8


Asian Institute of Research               Engineering and Technology Quarterly Reviews Vol.8, No.2, 2025 

 45 

Seo, J., Han, S., Lee, S., & Kim, H. (2015). Computer vision techniques for construction safety and health 

monitoring. Advanced Engineering Informatics, 29(2), 239–251. https://doi.org/10.1016/j.aei.2015.02.001. 

Shi, Y., Cui, L., Qi, Z., Meng, F., & Chen, Z. (2016). Automatic road crack detection using random structured 

forests. IEEE Transactions on Intelligent Transportation Systems, 17(12), 3434–3445. 

https://doi.org/10.1109/TITS.2016.2552248. 

Sohn, H., Farrar, C. R., Hemez, F. M., & Czarnecki, J. J. (2001). A review of structural health monitoring 

literature: 1996–2001. Los Alamos National Laboratory Report LA-UR-02-2095. 

Spencer Jr., B. F., Sim, S. H., Kim, R. E., & Yoon, H. (2025). Advances in artificial intelligence for structural 

health monitoring: A comprehensive review. KSCE Journal of Civil Engineering, 29(3), 100203. 

https://doi.org/10.1016/j.kscej.2025.100203. 

Sun, Z., Jayasinghe, S., Sidiq, A., Shahrivar, F., Mahmoodian, M., & Setunge, S. (2025). Approach towards the 

development of digital twin for structural health monitoring of civil infrastructure: A comprehensive review. 

Sensors, 25(1), 59. https://doi.org/10.3390/s25010059. 

Tang, P., Huber, D., Akinci, B., Lipman, R., & Lytle, A. (2010). Automatic reconstruction of as-built building 

information models from laser-scanned point clouds: A review of related techniques. Automation in 

Construction, 19(7), 829–843. https://doi.org/10.1016/j.autcon.2010.06.007. 

Torzoni, M., Tezzele, M., Mariani, S., Manzoni, A., & Willcox, K. E. (2024). A digital twin framework for civil 

engineering structures. Computer Methods in Applied Mechanics and Engineering, 418(Part B), 116584. 

https://doi.org/10.1016/j.cma.2023.116584. 

Xu, J., Shu, X., Qiao, P., Li, S., & Xu, J. (2023). Developing a digital twin model for monitoring building structural 

health by combining a building information model and a real-scene 3D model. Measurement, 217, 112955. 

https://doi.org/10.1016/j.measurement.2023.112955. 

Yamaguchi, T., & Hashimoto, S. (2010). Fast crack detection method for large-size concrete surface images using 

percolation-based image processing. Machine Vision and Applications, 21, 797–809. 

https://doi.org/10.1007/s00138-009-0189-8. 
Yasmin, T., La, D., La, K., Nguyen, M. T., & La, H. M. (2023). Concrete spalling detection system based on 

semantic segmentation using deep architectures. Computers & Structures, 300. 

https://doi.org/10.1016/j.compstruc.2024.107398. 

Zhang, A., Wang, K. C. P., Fei, Y., Liu, Y., Tao, S., Chen, C., Li, J. Q., & Li, B. (2018). Deep Learning–Based 

Fully Automated Pavement Crack Detection on 3D Asphalt Surfaces with an Improved CrackNet. Journal of 

Computing in Civil Engineering, 32(5). https://doi.org/10.1061/(ASCE)CP.1943-5487.0000775. 

 

https://doi.org/10.1016/j.aei.2015.02.001
https://doi.org/10.1109/TITS.2016.2552248
https://doi.org/10.1016/j.kscej.2025.100203
https://doi.org/10.3390/s25010059
https://doi.org/10.1016/j.autcon.2010.06.007
https://doi.org/10.1016/j.cma.2023.116584
https://doi.org/10.1016/j.measurement.2023.112955
https://doi.org/10.1007/s00138-009-0189-8
https://doi.org/10.1016/j.compstruc.2024.107398
https://doi.org/10.1061/(ASCE)CP.1943-5487.0000775

	Structural Health Monitoring of Buildings Using Computer Vision: A State-of-the-Art Review
	Horatiu-Alin Mociran1, Adina-Victorița Lăpuște2
	1. Introduction
	2. Fundamentals of Structural Health Monitoring
	2.1 Definition and Objectives
	2.2 Traditional SHM Methods
	2.3 Computer Vision vs. Conventional Methods
	2.4 Summary
	3. Computer Vision Techniques for SHM
	3.1 Image Processing Techniques
	3.2 Machine Learning Approaches
	3.3 Deep Learning Approaches
	3.4 3D Vision and Multi-Modal Approaches
	3.5 Summary
	4. Applications in Buildings
	4.1 Typical Defects in Buildings
	4.1.1 Cracks in Concrete and Masonry
	4.1.2 Spalling of Concrete
	4.1.3 Corrosion of Reinforcement and Metallic Components
	4.1.4 Moisture and Water-Induced Damage
	4.2 Case Studies from Literature
	4.2.1 UAV-Based High-Rise Façade Inspection
	4.2.2 Deep Learning for Crack Detection in Walls
	4.2.3 UAV Inspection with Infrared and Visual Imaging
	4.2.4 Crack Mapping Using Fully Convolutional Networks (FCNs)
	4.2.5 Spalling Detection in Reinforced Concrete Buildings
	4.2.6 Transfer Learning for Corrosion Recognition
	4.2.7 BIM-Integrated Computer Vision for Maintenance
	4.2.8 Hybrid Thermal and RGB Imaging for Moisture Detection
	4.2.9 Post-Earthquake Building Assessment
	4.3 Summary
	5. Datasets and Benchmarks
	5.1 Importance of Datasets in CV – based SHM
	5.2 Publicly Available Datasets
	5.2.1 CrackForest Dataset (CFD)
	5.2.2 SDNET2018
	5.2.3 Concrete Crack Dataset (Özgenel, 2018)
	5.2.4 Masonry Crack Dataset (MCD)
	5.2.5 Additional Specialized Datasets
	5.3 Benchmarking Practices
	5.4 Limitations of Current Datasets
	5.5 Summary
	6. Challenges and Future Directions
	6.1 Current Challenges
	6.1.1 Environmental Sensitivity
	6.1.2 Data Limitations
	6.1.3 Generalization and Transferability
	6.1.4 Integration with Structural Engineering Knowledge
	6.1.5 Computational Demands and Real-Time Operation
	6.2 Integration with Emerging Technologies
	6.2.1 Unmanned Aerial Vehicles (UAVs)
	6.2.2 Internet of Things (IoT) and Wireless Sensor Networks
	6.2.3 Building Information Modeling (BIM) and Digital Twins
	6.2.4 Augmented and Virtual Reality (AR/VR)
	6.3 Research Gaps and Future Trends
	6.4 Summary
	7. Conclusions
	Author Contributions: All authors contributed to this research.
	Funding: Not applicable.
	Conflicts of Interest: The authors declare no conflict of interest.
	Informed Consent Statement/Ethics approval: Not applicable.
	References

