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Abstract

Structural Health Monitoring (SHM) is essential for building safety, durability, and functionality. Buildings, as
key components of the built environment, suffer from cracking, spalling, corrosion, and moisture damage.
Traditional SHM approaches like vibration-based measurements, non-destructive testing (NDT), and manual
inspections are reliable. However, they are expensive, slow, and difficult to use at scale. Recent developments in
computer vision (CV), powered by advances in machine learning (ML) and deep learning (DL), have enabled
modern, automated, and contactless inspection systems capable of detecting structural defects with high precision.
This paper reviews the state of the art in computer vision applications for SHM of buildings. It focuses on the
evolution of image processing, ML and DL architectures, and new 3D and multimodal systems. The paper
categorizes common building defects, lists datasets for algorithm training and validation, and gives examples from
recent studies. Finally, the review identifies current obstacles and suggests future research directions. It focuses
on integration with drones, Building Information Modelling (BIM), the Internet of Things (IoT), and Digital Twin
technologies.

Keywords: Structural Health Monitoring, Computer Vision, Deep Learning, Defect Detection, Buildings, Civil
Engineering

1. Introduction

Ensuring the safety and long-term performance of civil engineering structures is one of the fundamental goals of
structural engineering practice. Among these structures, buildings represent the backbone of the built environment,
accommodating residential, commercial, educational, and industrial activities. Preserving their integrity and
reliability throughout their service life is therefore a matter of public safety, economic value, and social well-being.

Structural Health Monitoring (SHM) has become a multidisciplinary approach dedicated to assessing the condition
of structures, identifying early signs of deterioration, and supporting decisions regarding maintenance and
rehabilitation. Its ultimate objective is to extend the service life of structures, reduce life-cycle costs, and improve
their resilience against natural or anthropogenic hazards (Farrar & Worden, 2012).
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Conventional SHM practices rely heavily on non-destructive testing (NDT) techniques such as ultrasonic pulse
velocity, infrared thermography, rebound hammer testing, and strain gauge measurements, often complemented
by manual visual inspections. While these methods are well established, they also face inherent limitations: manual
inspections are time-consuming and subjective, whereas sensor-based systems require extensive setup, calibration,
and maintenance, which increase operational costs.

In recent years, the convergence of computer vision (CV), machine learning (ML), and deep learning (DL) has
triggered a paradigm shift in how structural health can be monitored. With the availability of high-resolution
cameras, affordable unmanned aerial vehicles (UAVs), and increasingly powerful computational tools, vision-
based systems have made it possible to perform scalable, automated, and non-contact inspections. These systems
are particularly suitable for buildings, where most degradation processes—such as cracks or spalling—are visually
perceptible and can be effectively analysed using digital imagery (Spencer et al., 2025; Zhuang et al., 2025).

The present paper aims to provide a comprehensive synthesis of computer vision applications in building SHM.
The main contributions are as follows:

e  Methodological overview: A detailed summary of computer vision approaches ranging from traditional image
processing to deep learning and multimodal frameworks used for defect detection.

e Application-oriented review: An examination of practical case studies focusing on typical building defects
such as cracks, spalling, corrosion, and moisture damage.

e Research perspectives: A discussion of current challenges and future directions, including integration with
BIM, IoT, and Digital Twin environments.

2. Fundamentals of Structural Health Monitoring
2.1 Definition and Objectives

It is both conventional and expedient to divide the Method section into labeled subsections. These usually include
a section with descriptions of the participants or subjects and a section describing the procedures used in the study.
The latter section often includes description of (a) any experimental manipulations or interventions used and how
they were delivered-for example, any mechanical apparatus used to deliver them; (b) sampling procedures and
sample size and precision; (¢) measurement approaches (including the psychometric properties of the instruments
used); and (d) the research design. If the design of the study is complex or the stimuli require detailed description,
additional subsections or subheadings to divide the subsections may be warranted to help readers find specific
information.

Include in these subsections the information essential to comprehend and replicate the study. Insufficient detail
leaves the reader with questions; too much detail burdens the reader with irrelevant information. Consider using
appendices and/or a supplemental website for more detailed information.

Structural Health Monitoring (SHM) refers to the continuous or periodic observation of a structure through the
acquisition and interpretation of data obtained from sensors, measurements, or visual inputs. Its purpose is to assess
the current condition of a structure, detect potential damage, and predict its future performance. The concept of
SHM emerged in the late 20th century as an evolution of traditional Non-Destructive Evaluation (NDE), shifting
the focus from localized inspections toward global and continuous assessments (Sohn et al., 2001; Farrar &
Worden, 2007).

In the case of buildings, SHM serves several essential objectives:

e Safety: Detecting early signs of damage before structural integrity is compromised.

e Serviceability: Ensuring that the building continues to perform its intended function effectively.

e Lifecycle management: Supporting preventive maintenance and timely repairs to extend service life.

e Post-event assessment: Providing rapid evaluations following earthquakes, fires, or extreme weather
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conditions.

An effective SHM system thus provides engineers and facility managers with actionable information that enables
data-driven decision-making and enhances the reliability of the built environment throughout its life cycle.

2.2 Traditional SHM Methods

Before the emergence of vision-based approaches, SHM systems relied primarily on three categories of methods:
vibration-based measurements, non-destructive testing (NDT), and manual inspections.

Vibration-Based Methods - These techniques are founded on the principle that structural damage modifies the
dynamic properties of a system—such as its natural frequencies, damping ratios, or mode shapes (Doebling et al.,
1996). Accelerometers and strain gauges are typically employed to record such variations, especially in tall
buildings or after seismic events. Advantages: sensitive to global damage and useful for dynamic behaviour
assessment. Limitations: require dense sensor networks, complex modal analysis, and are less effective for
localized surface-level defects.

Non-Destructive Testing (NDT) - Techniques including ultrasonic pulse velocity, infrared thermography, and
rebound hammer testing are widely applied for localized inspections and subsurface assessment. Advantages: high
precision in identifying internal or material-level damage. Limitations: labour-intensive, dependent on specialized
equipment, and difficult to scale for large areas.

Manual Visual Inspection - Still the most common method in practice, manual inspection relies on the experience
of engineers or inspectors who visually examine accessible parts of the structure. Advantages: straightforward,
inexpensive, and does not require complex instrumentation. Limitations: subjective, time-consuming, and limited
by accessibility and safety conditions.

While these traditional techniques remain valuable, their use on a large scale is constrained by high operational
costs, potential human bias, and limited scalability (Balageas et al., 2006). The increasing complexity and ageing
of urban infrastructure have made the need for more automated and efficient monitoring approaches evident.

2.3 Computer Vision vs. Conventional Methods

Over the last decade, computer vision (CV) has emerged as a promising alternative and complement to traditional
SHM methods. Unlike sensor-based systems that depend on physical contact, CV relies on visual data—images
or videos—acquired using cameras placed on tripods, handheld devices, or unmanned aerial vehicles (UAVs).

Main advantages of CV-based SHM include: non-contact monitoring; cost efficiency as cameras and UAVs
become affordable; scalability for inspecting large facades or multiple structures; automation through ML/DL
algorithms; and integration potential with BIM and Digital Twin platforms. Limitations include sensitivity to
lighting and environmental factors, dependence on image quality, the need for large annotated datasets, and the
difficulty of detecting subsurface defects without complementary NDT methods.

Despite these drawbacks, numerous studies indicate that CV-based techniques are maturing rapidly. In many cases,
they now outperform conventional methods in terms of efficiency, automation, and scalability (Hoskere et al.,
2018; Dong & Catbas, 2018). Hybrid frameworks that combine sensor data and vision analytics are also emerging
as a balanced approach for comprehensive SHM (Mardanshahi et al., 2025).

2.4 Summary
The evolution of SHM represents a shift from localized, sensor-dependent evaluations toward image-based and

data-driven methodologies. Traditional methods continue to play an important role, especially for subsurface
defect analysis. However, computer vision provides major advantages in scalability, automation, and cost
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reduction. Given that most building defects—such as cracks, corrosion, or spalling—manifest on visible surfaces,
vision-based systems are naturally suited to this domain.

3. Computer Vision Techniques for SHM

Computer Vision (CV) has become an increasingly important tool in Structural Health Monitoring (SHM) because
it can extract relevant information from visual data and automate structural defects identification. Over the past
two decades, CV techniques have evolved from classical image processing to advanced machine learning (ML)
and deep learning (DL) methods, bringing substantial improvements in accuracy, robustness, and scalability.

3.1 Image Processing Techniques

Early vision-based SHM systems relied mainly on traditional image processing algorithms designed to enhance
visible defects—such as cracks, spalling, or discoloration—by analysing variations in pixel intensity and texture.
Common approaches include edge detection (e.g., Canny, Sobel), thresholding (e.g., Otsu), morphological
operations (erosion, dilation, skeletonization), and texture analysis (GLCM). These methods are efficient and easy
to implement, but are sensitive to lighting variations, surface textures, and noise. For instance, stains or paint
patterns may be misclassified as cracks. Parrany et al. (2022) showed that with careful tuning, classical methods
can still perform well under variable lighting. Today, image processing is often used as a preprocessing stage
rather than a standalone detector.

3.2 Machine Learning Approaches

As labelled datasets became more available, machine learning (ML) methods emerged as a data-driven alternative
to handcrafted rules. Algorithms such as Support Vector Machines (SVM), k-Nearest Neighbours (k-NN), and
ensemble methods like Decision Trees and Random Forests classify patterns associated with defects using
engineered features (e.g., HOG, LBP, wavelets). ML models are more flexible than classical image processing but
depend strongly on feature quality and data diversity. Jahanshahi & Masri (2012) demonstrated an SVM-based
system for crack detection in reinforced concrete with robust results in practical settings.

3.3 Deep Learning Approaches

Deep Learning (DL) has transformed CV applications in SHM by learning hierarchical features directly from raw
images. Major architectures include classification networks (AlexNet, VGG, ResNet), object detection
frameworks (Faster R-CNN, YOLO, SSD), segmentation models (U-Net, SegNet, Mask R-CNN), and
transformer-based models (Vision Transformers and hybrid CNN-Transformer designs). DL offers high accuracy
and robustness but requires large annotated datasets and considerable computation, and may struggle to generalize
to unseen conditions (Zhang et al., 2018). Cha et al. (2017) achieved >98% crack detection accuracy using CNNs;
Yasmin et al. (2023) demonstrated effective spalling detection via deep segmentation. Reviews by Cha et al. (2024)
and Gao et al. (2023) underline DL’s dominant role in current SHM research.

3.4 3D Vision and Multi-Modal Approaches

Beyond 2D imagery, 3D vision and multimodal systems combine visual, geometric, and thermal information for
richer assessment. Photogrammetry and Structure-from-Motion reconstruct 3D fagade models onto which defects
can be mapped. LIDAR—CYV integration enables accurate geometry and spatial localization (Tang et al., 2010;
Olsen et al., 2010). Depth sensors (e.g., RGB-D) assist in detecting spalling and surface deformation, while RGB—
thermal fusion supports moisture and subsurface defect identification. These benefits come with higher equipment
costs and more complex data processing pipelines.

3.5 Summary

Computer vision for SHM has progressed from pixel-based processing to deep learning and multimodal 3D
frameworks. While classical processing remains valuable for enhancement and preprocessing, DL currently leads
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in automation and precision. Integrating LiDAR, 3D reconstruction, and thermal imaging paves the way for hybrid
monitoring systems that merge visual, geometric, and physical data.

4. Applications in Buildings

The adoption of CV for SHM in buildings has accelerated due to the prevalence of surface-visible defects and the
practicality of image-based methods. Yet, challenges such as variable textures, illumination, and limited access—
particularly for high-rise fagades—persist. This section reviews typical building defects and representative case
studies.

4.1 Typical Defects in Buildings

4.1.1 Cracks in Concrete and Masonry

Cracks arise from shrinkage, thermal effects, settlement, overloading, or seismic actions. Although fine cracks
may be superficial, their propagation can affect serviceability and safety. Detection approaches include classical
edge-based and thresholding methods (Yamaguchi & Hashimoto, 2010), DL models (e.g., CNNs) with accuracies
above 95% (Cha et al., 2017), and emerging Vision Transformers that improve robustness to lighting and noise.
4.1.2 Spalling of Concrete

Spalling involves the flaking or detachment of concrete cover, often exposing reinforcement and accelerating
corrosion. DL-based segmentation (U-Net, Mask R-CNN) on RGB images is widely used (Yasmin et al., 2019).
Combining RGB with depth or 3D photogrammetry improves quantification of depth and extent. UAV imaging is
practical for upper facades and difficult-to-reach areas.

4.1.3 Corrosion of Reinforcement and Metallic Components

Corrosion reduces the cross-sectional area of steel elements, leading to capacity loss. Colour-based segmentation
using hue/saturation and DL models trained on corrosion datasets have shown strong performance (Gao &
Mosalam, 2018). Infrared—RGB fusion can reveal corrosion beneath coatings in some scenarios.

4.1.4 Moisture and Water-Induced Damage

Moisture ingress leads to staining, efflorescence, biological growth, and coating delamination. Thermal infrared
combined with CV detects temperature anomalies linked to moisture; RGB methods capture discoloration, and
CNNs improve robustness. Linking moisture maps with BIM facilitates preventive maintenance planning.

4.2 Case Studies from Literature

4.2.1 UAV-Based High-Rise Fagade Inspection

Dorafshan et al. (2018) compared edge-based crack detection with CNNs on UAV imagery, finding higher
accuracy and faster inspection using deep learning—improving safety and efficiency in fagade assessments.

4.2.2 Deep Learning for Crack Detection in Walls

Chaetal. (2017) developed a CNN-based framework for detecting cracks on concrete surfaces, achieving accuracy
above 98% and demonstrating feasibility for real inspections.

4.2.3 UAV Inspection with Infrared and Visual Imaging
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UAVs equipped with RGB and infrared cameras effectively assess building envelopes. Thermal imagery identifies
insulation defects and moisture ingress, while RGB supports detailed crack analysis (Fox et al., 2016; Hoskere et
al., 2018).

4.2.4 Crack Mapping Using Fully Convolutional Networks (FCNs)

Dung & Anh (2019) proposed an FCN for pixel-level crack segmentation, enabling quantitative evaluation and
monitoring of crack evolution.

4.2.5 Spalling Detection in Reinforced Concrete Buildings

Yasmin et al. (2023) applied deep segmentation for spalling detection and, by incorporating depth information,
estimated severity as well as extent.

4.2.6 Transfer Learning for Corrosion Recognition

Gao & Mosalam (2018) used deep transfer learning to recognize corrosion in reinforced concrete, showing that
pre-trained CNNs can perform well even with limited training data.

4.2.7 BIM-Integrated Computer Vision for Maintenance

Brilakis et al. (2010) integrated CV-based defect detection with BIM, mapping defects onto 3D models to support
predictive maintenance. Recent work extends this toward Digital Twin frameworks (Xu et al., 2023).

4.2.8 Hybrid Thermal and RGB Imaging for Moisture Detection

Fox et al. (2016) combined thermal and RGB imaging to detect moisture-induced deterioration, providing early
warning of insulation failures and potential mould growth.

4.2.9 Post-Earthquake Building Assessment

Zhuang et al. (2025) developed a deep learning framework for post-earthquake damage classification with 96.1%
accuracy, using Grad-CAM for interpretability and prioritization in emergency response.

4.3 Summary

CV applications in building SHM span cracks, spalling, corrosion, and moisture-related defects. Field studies,
including UAV-based inspections, confirm gains in efficiency and safety. Persistent challenges include
environmental variability, dataset standardization, and multimodal integration. Addressing these is key to robust,
scalable, automated monitoring.

5. Datasets and Benchmarks

The performance and reliability of CV techniques for SHM depend on dataset quality and diversity. Large, well-
annotated datasets are essential for robust ML/DL models capable of handling varied materials, defect types, and
conditions.

5.1 Importance of Datasets in CV — based SHM

DL algorithms rely on large labelled datasets to achieve generalizable performance. Ideal SHM datasets include
multiple defect categories (cracks, spalling, corrosion, moisture), various materials (concrete, masonry, steel), and
diverse environmental conditions. Without such diversity, models overfit and fail in new scenarios (Zhang et al.,
2018; Ozgenel, 2018). Dataset creation is hindered by manual annotation effort, class imbalance, and limited
diversity.

40



Asian Institute of Research Engineering and Technology Quarterly Reviews Vol.8, No.2, 2025

5.2 Publicly Available Datasets
5.2.1 CrackForest Dataset (CFD)

Originally for road surfaces, CrackForest (Shi et al., 2016) includes 118 annotated concrete images with pixel-
level crack labels and is widely reused for building studies.

5.2.2 SDNET2018

SDNET2018 (Dorafshan et al., 2018) provides over 56,000 images of decks, walls, and pavements under diverse
conditions. Though bridge-oriented, its vertical imagery suits fagade inspection.

5.2.3 Concrete Crack Dataset (Ozgenel, 2018)

Comprising 40,000 cropped patches labelled as crack/non-crack, this dataset is common for binary CNN training,
though it lacks pixel-level annotations for segmentation.

5.2.4 Masonry Crack Dataset (MCD)

MCD (Dung & Anh, 2019) targets masonry walls and heritage buildings with labelled cracked and intact regions—
useful beyond concrete, albeit smaller in scale.

5.2.5 Additional Specialized Datasets

Thermal datasets (moisture, subsurface defects) are often proprietary. Small corrosion datasets (e.g., Gao &
Mosalam, 2018) support transfer learning. Spalling datasets exist but lack a standard public benchmark.

5.3 Benchmarking Practices

Common metrics: Accuracy and Fl-score (classification), IoU (segmentation/localization), Precision—Recall
(class imbalance), and FPS (real-time/UAV contexts). Comparisons across studies are difficult due to differing
datasets, preprocessing, and protocols; the field lacks ImageNet-like standardized benchmarks (Hoskere et al.,
2018).

5.4 Limitations of Current Datasets

Key limitations: small scale and narrow scope (focus on cracks), limited diversity (materials, lighting, weather),
inconsistent annotation formats, and restricted access to industry data. These hinder generalization and slow
progress toward deployable SHM systems.

5.5 Summary

Public datasets such as CrackForest, SDNET2018, and Ozgenel’s collection have shaped SHM research, but
broader, multi-defect, multimodal datasets are needed. Standardized benchmarks and open challenges would
accelerate progress and improve reproducibility.

6. Challenges and Future Directions

CV enables efficient, automated, non-contact SHM for buildings, yet adoption in practice is limited by
environmental sensitivity, data scarcity, generalization issues, and computational demands. Concurrently,

advances in Al, sensing, and digital construction create new opportunities.

6.1 Current Challenges
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6.1.1 Environmental Sensitivity

Algorithms are sensitive to lighting, shadows, textures, and weather. Crack detection suffers under uneven
illumination or stain-like backgrounds, limiting robustness (Chen et al., 2017).

6.1.2 Data Limitations

Large, diverse labelled data are scarce for buildings; popular datasets emphasize cracks. Models trained on one
dataset often generalize poorly due to bias (Dong & Catbas, 2018).

6.1.3 Generalization and Transferability

Performance drops when moving from lab to field because of changing textures and lighting. Transfer learning
and domain adaptation help but remain underexplored in SHM (Gao & Mosalam, 2018).

6.1.4 Integration with Structural Engineering Knowledge

Many CV systems lack explicit links between visual detections and structural significance (e.g., load paths, safety
margins). Tighter coupling with mechanics would improve interpretability and usefulness (Hoskere et al., 2018).

6.1.5 Computational Demands and Real-Time Operation

Training and inference are resource-intensive, challenging real-time UAV deployments. Lightweight, energy-
efficient models for edge devices are an active research area.

6.2 Integration with Emerging Technologies

6.2.1 Unmanned Aerial Vehicles (UAVs)

UAVs provide rapid, safe access to facades, roofs, and hard-to-reach zones. With RGB/IR/depth sensors, they
capture high-resolution data at scale; paired with CV, they enable automated, repeatable monitoring (Dorafshan et
al., 2018).

6.2.2 Internet of Things (IoT) and Wireless Sensor Networks

Hybrid SHM merges visual data with strain, vibration, and humidity sensing via IoT platforms, enabling richer
diagnostics and multi-sensor fusion (Seo et al., 2015).

6.2.3 Building Information Modeling (BIM) and Digital Twins

CV detections can be mapped onto BIM for spatial records and maintenance planning. Digital Twins link physical
assets to virtual models for real-time visualization, simulation, and prediction (Brilakis et al., 2010; Torzoni et al.,
2024; Sun et al., 2025).

6.2.4 Augmented and Virtual Reality (AR/VR)

AR/VR enhances on-site decision-making by overlaying defect information on real scenes, enabling access to
historical records and facilitating repair simulations.

6.3 Research Gaps and Future Trends
Promising directions include: large, multi-defect open datasets; compact models for edge/UAV deployment; self-

supervised and semi-supervised learning to reduce labelling needs; explainable Al to link visual cues with
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structural behaviour; integration with lifecycle asset management; and advanced transformer-based architectures
(Hu et al., 2025) for context-aware analysis.

6.4 Summary

Despite clear benefits, CV-based SHM faces barriers related to data, environment, and computation. Progress will
rely on tighter integration with UAVs, IoT, BIM, and Digital Twins, along with explainable, lightweight Al
models. These advances will shift practice from reactive inspection to proactive, predictive maintenance.

7. Conclusions

Structural Health Monitoring (SHM) plays a vital role in ensuring the safety, functionality, and durability of
buildings throughout their service life. Traditional inspection methods—such as manual surveys, non-destructive
testing (NDT), and sensor-based systems—have served the profession effectively for decades, yet their limitations
in cost, scalability, and subjectivity motivate more automated solutions. Computer vision (CV) enables non-
contact, efficient, and scalable monitoring.

This review summarized computer vision—based SHM approaches for buildings, covering foundational concepts,
methods from classical image processing to deep learning and multimodal 3D systems, applications to typical
defects, datasets and benchmarking practices, and key challenges with future directions. DL models—especially
CNNs and segmentation networks—currently offer the most accurate detection and quantification of surface
defects. Field studies confirm the maturity and feasibility of CV-based inspections.

While public datasets such as CrackForest, SDNET2018, and Ozgenel’s collection have accelerated progress,
broader, standardized multi-defect datasets are needed for fair comparison and reproducibility. Future
development will likely be shaped by integration with UAVs, IoT, BIM, and Digital Twins, together with advances
in explainable, lightweight Al

By leveraging modern Al, multimodal sensing, and digital construction workflows, CV-based SHM can deliver
accurate, real-time, and cost-efficient assessments—supporting a shift from reactive inspection to proactive,
predictive maintenance. This review aims to serve researchers and practitioners as a concise reference and to
encourage scalable frameworks for smart, resilient, and sustainable cities.
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