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Abstract 

We consider that a finite dimensional real normed linear space 𝑋 is an inner product space if for any linear 

operator 𝑇 on 𝑋, 𝑇 preserving its norm at 𝑒1, 𝑒2 ∈ 𝑆𝑋 implies T attains its norm at span{𝑒1, 𝑒2} ∩ 𝑆𝑋 . We prove 

by the convexity theorem.  
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1. Introduction 

 

Let (𝑋, ∥⋅∥) be a real normed space. Let 𝐵𝑋 = {𝑥 ∈ 𝑋: ∥ 𝑥 ∥≤ 1} and 𝑆𝑋 = {𝑥 ∈ 𝑋: ∥ 𝑥 ∥= 1} be the unit ball and 

the unit sphere of the normed space 𝑋  respectively. Let 𝐵(𝑋, 𝑌)(𝐾(𝑋, 𝑌))  denote the set of all bounded 

(compact) linear operators from 𝑋 to another real normed space 𝑌. We write 𝐵(𝑋, 𝑌) = 𝐵(𝑋) and 𝐾(𝑋, 𝑌) =

𝐾(𝑋) if 𝑋 = 𝑌. 𝑇 ∈ 𝐵(𝑋, 𝑌) is said to attain its norm at 𝑥0 ∈ 𝑆𝑋 if ∥ 𝑇𝑥0 ∥=∥ 𝑇 ∥. Let 𝑀𝑇 denote the set of all 

unit vectors in 𝑆𝑋 at which 𝑇 attains [Watson, 1992] norm, i.e.,  

 𝑀𝑇 = {𝑥 ∈ 𝑆𝑋: ∥ 𝑇𝑥 ∥=∥ 𝑇 ∥}  

  

 Let X be a normed space over the field 𝐾 ∈ (𝑅, 𝐶); then for 𝑥, 𝑦 ∈ 𝑋. We call the relation ⊥𝐵 , a Birkhoff [Li 

and Schneider, 2002],[Bhatia and Šemrl, 1999], [Chmielowski and Wójcik, 2010] ,[NSKI and AZYCH, 2005] 

orthogonality (often called a Birkhoff-James orthogonality). There is no unique way how to transfer the notion 

of orthogonality from inner product spaces to normed spaces. Perhaps the most useful is the notion of Birkhoff 

orthogonality; however many other can be used. One can also consider an axiomatic definition of the 

orthogonality relation and the orthogonality space. The notion of Birkhoff–James in [Lumer, 1961], [Alonso et 

al., 2012] orthogonality plays a very important role in the geometry of Banach spaces. For any two elements 

𝑥, 𝑦 ∈ 𝑋, 𝑥 is said to be orthogonal to 𝑦 in the sense of Birkhoff–James, written as 𝑥 ⊥𝐵 𝑦, if and only if  

 ∥ 𝑥 ∥≤∥ 𝑥 + 𝜆𝑦 ∥ ∀𝜆 ∈ ℝ.  
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 Similarly, [Paul et al., 2016a], [Paul et al., 2016], [Turnšek, 2005], [Sain, 2017], and [Alonso et al., 2012] define 

for 𝑇, 𝐴 ∈ 𝐵(𝑋, 𝑌) , 𝑇 is said to be orthogonal to 𝐴, if and only if  

 ∥ 𝑇 ∥≤∥ 𝑇 + 𝜆𝐴 ∥ ∀𝜆 ∈ ℝ.  

 

C. Alsina, J. Sikorska, M. S. Toms,[Carlsson, 1962] define. Let 𝑋 be a linear space over 𝕂(= ℝ    𝑜𝑟    ℂ) . The 

inner product (scalar product) is a function  

 〈⋅,⋅〉: 𝑋 × 𝑋 ⟼ 𝕂  

 such that:   

    1.  〈𝑥, 𝑥〉 ≥ 0  

    2.  〈𝑥, 𝑥〉 = 0 if and only if 𝑥 = 0  

    3.  〈𝛼𝑥, 𝑦〉 = 𝛼〈𝑥, 𝑦〉;  

    4.  〈𝑥1 + 𝑥2, 𝑦〉 = 〈𝑥1, 𝑦〉 + 〈𝑥2, 𝑦〉;  

    5.  〈𝑥, 𝑦〉 = 〈𝑦, 𝑥〉  

 for all 𝑥, 𝑦1, 𝑦2 ∈ 𝑋 and all 𝛼 ∈ 𝕂 〈𝑥, 𝑦1 + 𝑦2〉 = 〈𝑥, 𝑦1〉 + 〈𝑥, 𝑦2〉 , 

〈𝑥, 𝛼𝑦〉 = 𝛼〈𝑥, 𝑦〉 , 

for all 𝑥, 𝑦1, 𝑦2 ∈ 𝑋 and 𝛼 ∈ 𝕂  

For a space with an inner product we define  

 ∥ 𝑥 ∥= √〈𝑥, 𝑥〉.  

  

 C.Alsina, J.Sikorska,M.S.Toms, In [Alsina et al., 2010] define. A pair (𝑋, ∥⋅∥) is called a real normed linear 

space provided that 𝑋 is a vector space over the field of real numbers ℝ and the function ∥⋅∥ from 𝑋 into ℝ 

satisfies the properties:   

    1.  ∥ 𝑥 ∥≥ 0 for all 𝑥 in 𝑋,  

    2.  ∥ 𝑥 ∥= 0 if and only if 𝑥 = 0,  

    3.  ∥ 𝛼𝑥 ∥= |𝛼| ∥ 𝑥 ∥ for all 𝑥 in 𝑋 and 𝛼 in ℝ,  

    4.  ∥ 𝑥 + 𝑦 ∥≤∥ 𝑥 ∥ +∥ 𝑦 ∥ for all 𝑥 and 𝑦 in 𝑋.  

 

The function ∥⋅∥ is called a norm and the real number ∥ 𝑥 ∥ is said to be the norm of 𝑥. In the real line ℝ the only 

norms are those of the form ∥ 𝑥 ∥= |𝑥|, 𝑥 ∈ 𝑋, where | ⋅ | denotes the absolute value |𝑥|: = 𝑚𝑎𝑥(𝑥, −𝑥), 𝑥 ∈ ℝ. 

In general, for all 𝑥, 𝑦 in 𝑋 we have  

 | ∥ 𝑥 ∥ −∥ 𝑦 ∥ | ≤∥ 𝑥 − 𝑦 ∥≤∥ 𝑥 ∥ +∥ 𝑦 ∥,  

  

 In [Alsina et al., 2010] and [Birkhoff, 1935] so introducing the mapping 𝑑 from 𝑋 × 𝑋 into ℝ by  

 𝑑(𝑥, 𝑦): =∥ 𝑥 − 𝑦 ∥,  

 

 for all 𝑥, 𝑦 in 𝑋, we infer that 𝑑 is a metric induced by the norm ∥⋅∥, so (𝑋, 𝑑) is a metric space and therefore a 

topological space. With respect to the metric topology, the norm ∥⋅∥ is continuous and the topology induced by 

the norm is compatible with the vector space operations, i.e., ℝ × 𝑋 ∋ (𝛼, 𝑥) ⟼ 𝛼𝑥 ∈ 𝑋 and 𝑋 × 𝑋 ∋ (𝑥, 𝑦) ⟼

𝑥 + 𝑦 ∈ 𝑋 are continuous in both variables together.  

 

 In a finite dimensional Hilbert space H, Bhatia and Semrl [Paul et al., 2016] and Paul et al. independently 

proved that 𝑇 ⊥𝐵 𝐴 if and only if there exists 𝑥 ∈ 𝑋 with ∥ 𝑥 ∥= 1 such that ∥ 𝑇𝑥 ∥=∥ 𝑇 ∥ and 𝑇𝑥 ⊥𝐵 𝐴𝑥. Bhatia 

and Semrl conjectured in their paper that if X is a finite dimensional normed linear space and 𝑇 ⊥𝐵 𝐴 then there 

exists 𝑥 ∈ 𝑆𝑋  such that ∥ 𝑇𝑥 ∥=∥ 𝑇 ∥ and 𝑇𝑥 ⊥𝐵 𝐴𝑥 . Li and Schneider [CONWAY, 1985] gave examples of 

finite dimensional normed linear spaces X in which there exist operators 𝑇, 𝐴 ∈ 𝐿(𝑋) such that 𝑇 ⊥𝐵 𝐴 but there 

exists no 𝑥 ∈ 𝑆𝑋 such that ∥ 𝑇𝑥 ∥=∥ 𝑇 ∥ and 𝑇𝑥 ⊥𝐵 𝐴𝑥, which proved that the conjecture by Bhatia and Semrl is 

not true. Benítez et al. [Alsina et al., 2010] proved that X is an inner product space if and only if for 𝑇, 𝐴 ∈ 𝐿(𝑋) 

with 𝑇 ⊥𝐵 𝐴 there exists 𝑥 ∈ 𝑆𝑋  such that ∥ 𝑇𝑥 ∥=∥ 𝑇 ∥ and 𝑇𝑥 ⊥𝐵 𝐴𝑥. 
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2. Main results 

 

In this paper we prove that if T is a linear operator on a real normed linear space X such that T preserve its norm 

only at ±𝐷, where D is a connected subset of 𝑆𝑋 then 𝑇 ⊥𝐵 𝐴 if and only if there exists 𝑥 ∈ 𝑆𝑋  such that ∥ 𝑇𝑥 ∥=

∥ 𝑇 ∥ and 𝑇𝑥 ⊥𝐵 𝐴𝑥. Using this result we prove that a finite dimensional real normed linear space X is an inner 

product space iff for any linear operator T on X, T preserve its norm at 𝑒1, 𝑒2 ∈ 𝑆𝑋 implies T attains its norm at 

𝑠𝑝𝑎𝑛{𝑒1, 𝑒2} ∩ 𝑆𝑋 . 

 

Orthogonality Preserving Mappings 

 

It is not difficult to prove that a linear mapping 𝑓: 𝐗 ⟼ 𝐘  between inner product spaces which preserves 

orthogonality 𝑥 ⊥ 𝑦 ⟹ 𝑓𝑥 ⊥ 𝑓𝑦  for all 𝑥, 𝑦 ∈ 𝐗 has to be a similarity (scalar multiple of an isometry ); cf. 

[Chmielowski, 2005] It is much harder to see that the same is true for linear mappings between normed spaces, 

preserving the Birkhoff orthogonality, i.e., satisfying  

 𝑥 ⊥𝐵 𝑦      ⟹       𝑓𝑥 ⊥𝐵 𝑓𝑦      𝑥, 𝑦 ∈ 𝐗.  

 For real spaces it has been proved by koldobsky [Wójcik, 2019] a proof including both real and 

complex spaces has been given by Blanco and Turnšek [Blanco and Turnšek, 2006] The same assertion can be 

also derived for linear mappings preserving a semi-orthogonality, i.e., satisfying 

 

 𝑥 ⊥𝑠 𝑦      ⟹       𝑓𝑥 ⊥𝑠 𝑓𝑦,            𝑥, 𝑦 ∈ 𝐗  

 with respect to some semi-inner product in 𝐗 (cf.[[Wójcik, 2012] Remark 3.2])  

 

Theorem 3.1 Let us consider now linear mappings 𝑓: 𝑿 ⟼ 𝒀 (between normed spaces 𝑿 and 𝒀 ) that preserve 

the (𝜌)-orthogonalities:  

 𝑥 ⊥𝜌+
𝑦      ⟹       𝑓𝑥 ⊥𝜌+

𝑓𝑦,                    𝑥, 𝑦 ∈ 𝐗;  𝑥 ⊥𝜌−
𝑦      ⟹       𝑓𝑥 ⊥𝜌−

𝑓𝑦,                  𝑥, 𝑦 ∈ 𝐗; 

𝑥 ⊥𝜌 𝑦      ⟹       𝑓𝑥 ⊥𝜌 𝑓𝑦,                  𝑥, 𝑦 ∈ 𝐗.  

 The following characterization of 𝜌±-orthogonality preserving mappings is in our disposal. 

Proof by [Mojškerc and Turnšek, 2010]  

  

Theorem 3.2 Let 𝑿, 𝒀  be real normed spaces, 𝑓: 𝑿 ⟼ 𝒀  a nonzero, linear mapping. Then, the following 

conditions are equivalent:   

    1.  𝑓 preserves 𝜌+ - orthogonality;  

    2.  𝑓 preserves 𝜌− - orthogonality;  

    3.  ∥ 𝑓𝑥 ∥=∥ 𝑓 ∥∥ 𝑥 ∥ ,        𝑥 ∈ 𝐗;  

    4.  𝜌+
′ (𝑓𝑥, 𝑓𝑦) =∥ 𝑓 ∥2 𝜌+

′ (𝑥, 𝑦),                  𝑥, 𝑦 ∈ 𝐗;  

    5.  𝜌−
′ (𝑓𝑥, 𝑓𝑦) =∥ 𝑓 ∥2 𝜌−

′ (𝑥, 𝑦),                  𝑥, 𝑦 ∈ 𝐗;  

    6.  𝜌′(𝑓𝑥, 𝑓𝑦) =∥ 𝑓 ∥2 𝜌′(𝑥, 𝑦),                  𝑥, 𝑦 ∈ 𝐗  

 

Proof. [Turnšek, 2005] and [Wójcik, 2012] First, we prove (𝑎) ⟺ (𝑏) . Suppose that 𝑓  preserves 𝜌+ -

orthogonality. Let 𝑥, 𝑦 ∈ 𝑋 be such that 𝑥 ⊥𝜌−
𝑦. Thus, 𝜌+

′ (−𝑥, 𝑦) = −𝜌−
′ (𝑥, 𝑦) = 0, i.e., −𝑥 ⊥𝜌+

𝑦  . Since 𝑓 

preserves 𝜌+ -orthogonality, we have −𝑓𝑥 ⊥𝜌+
𝑓𝑦  which yields 𝑓𝑥 ⊥𝜌−

𝑓𝑦 . The proof of the converse 

implication (𝑏) ⇒ (𝑎) is similar. 

 

Now, we prove that (𝑎) and (𝑏) yield (𝑐). Let 𝑥, 𝑦 ∈ 𝑋, 𝑥 ≠ 0, be such that 𝑥 ⊥𝐵 𝑦 . We have 𝜌−
′ (𝑥, 𝑦) ≤ 0 ≤

𝜌+
′ (𝑥, 𝑦) and hence  

 
∥𝑓𝑥∥2

∥𝑥∥2 𝜌−
′ (𝑥, 𝑦) ≤ 0 ≤

∥𝑓𝑥∥2

∥𝑥∥2 𝜌+
′ (𝑥, 𝑦).  

 We have  

 𝜌+
′ (𝑥, −

𝜌+
′ (𝑥,𝑦)

∥𝑥∥2 𝑥 + 𝑦) = −
𝜌+

′ (𝑥,𝑦)

∥𝑥∥2 ∥ 𝑥 ∥2+ 𝜌+
′ (𝑥, 𝑦) = 0,  

 i.e., 𝑥 ⊥𝜌+
(−

𝜌+
′ (𝑥,𝑦)

∥𝑥∥2 𝑥 + 𝑦). Now, (a) implies  

 𝑓𝑥 ⊥𝜌+
(−

𝜌+
′ (𝑥,𝑦)

∥𝑥∥2 𝑓𝑥 + 𝑓𝑦)  
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 hence  

 0 = 𝜌+
′ (𝑓𝑥, −

𝜌+
′ (𝑥,𝑦)

∥𝑥∥2 𝑓𝑥 + 𝑓𝑦) = −
𝜌+

′ (𝑥,𝑦)

∥𝑓𝑥∥2 ∥ 𝑥 ∥2+ 𝜌+
′ (𝑓𝑥, 𝑓𝑦).  

 

It yields 𝜌+
′ (𝑓𝑥, 𝑓𝑦) =

∥𝑓𝑥∥2

∥𝑥∥2 𝜌+
′ (𝑥, 𝑦)  and similarly, (b) yields 𝜌−

′ (𝑓𝑥, 𝑓𝑦) =
∥𝑓𝑥∥2

∥𝑥∥2 𝜌−
′ (𝑥, 𝑦)  Thus, inequalities 

take the form  

 𝜌−
′ (𝑓𝑥, 𝑓𝑦) ≤ 0 ≤ 𝜌+

′ (𝑓𝑥, 𝑓𝑦)  

which gives 𝑓𝑥 ⊥𝐵 𝑓𝑦. Hence, f preserves Birkhoff orthogonality, i.e., 𝑓 is a similarity and (c) holds true. 

 

Let us show (𝑐) ⟹ (𝑑) and (𝑐) ⟹ (𝑒). Let 𝑥, 𝑦 ∈ 𝑋(without loss of generality we may assume 𝑥 ≠ 0). We 

have from (𝑐)  

 𝜌±
′ (𝑥, 𝑦) = lim𝑡→±0

∥𝑥+𝑡𝑦∥2−∥𝑥∥2

2𝑡
=

1

∥𝑓∥2 lim𝑡→±0
∥𝑓𝑥+𝑡𝑓𝑦∥2−∥𝑓𝑥∥2

2𝑡
=

1

∥𝑓∥2 𝜌±
′ (𝑓𝑥, 𝑓𝑦)  

 

 and (d) and (e) follows. Implications (𝑑) ⟹ (𝑎) and (𝑒) ⟹ (𝑏) are obvious. Therefore, conditions (𝑎) ⟺ (𝑒) 

are equivalent. Condition (f) follows easily from (d) and (e) and, conversely, assuming (f) and taking 𝑦 = 𝑥, one 

gets ∥ 𝑓𝑥 ∥2=∥ 𝑓 ∥2⋅∥ 𝑥 ∥2 hence (c) follows. Obviously, (f) implies (g). 

 

Theorem 3.3  Let 𝑋 be a finite dimensional real normed linear space. Let 𝑇 ∈ 𝐿(𝑋) be such that T preserving its 

norm at only ±𝐷, where 𝐷 (Disk) is a connected subset of  𝑆𝑋 . Then for 𝐴 ∈ 𝐿(𝑋) with 𝑇 ⊥𝐵 𝐴 there exists 𝑥 ∈

𝐷 such that 𝑇𝑥 ⊥𝐵 𝐴𝑥.  

 

Proof. If possible suppose that there does not exist any 𝑥 ∈ 𝐷  such that 𝑇𝑥 ⊥𝐵 𝐴𝑥 . We now obtain a 

contradiction in the following three steps to complete the proof of the theorem. 

 

First. In the first step we show that 𝐷 = 𝑊1 ∪ 𝑊2 where  

 𝑊1 = {𝑥 ∈ 𝐷: ∥ 𝑇𝑥 + 𝜆𝐴𝑥 ∥>∥ 𝑇 ∥, ∀𝜆 > 0}, 𝑊2 = {𝑥 ∈ 𝐷: ∥ 𝑇𝑥 + 𝜆𝐴𝑥 ∥>∥ 𝑇 ∥, ∀𝜆 < 0}.  

 

Let 𝑥0 ∈ 𝐷 be arbitrary. Since 𝑇𝑥0 is not orthogonal to 𝐴𝑥0 in the sense of Birkhoff–James so there exists 𝜆0 ∈

ℝ such that ∥ 𝑇𝑥0 + 𝜆0𝐴𝑥0 ∥<∥ 𝑇𝑥0 ∥=∥ 𝑇 ∥. Now either 𝜆0 > 0 or 𝜆0 < 0. We assume that 𝜆0 < 0. Now, for 

𝜆 > 0, ∃𝑡 ∈ (0,1) such that, by the convexity  

 𝑇𝑥0 = 𝑡(𝑇𝑥0 + 𝜆𝐴𝑥0) + (1 − 𝑡)(𝑇𝑥0 + 𝜆0𝐴𝑥0) 

 ⇒∥ 𝑇𝑥0 ∥< 𝑡 ∥ (𝑇𝑥0 + 𝜆𝐴𝑥0) ∥ +(1 − 𝑡) ∥ 𝑇𝑥0 + 𝜆0𝐴𝑥0 ∥ 

 ⇒∥ 𝑇𝑥0 ∥<∥ 𝑇𝑥0 + 𝜆0𝐴𝑥0 ∥ 

  

There for ∥ 𝑇𝑥0 + 𝜆0𝐴𝑥0 ∥>∥ 𝑇𝑥0 ∥=∥ 𝑇 ∥       ∀𝜆 > 0. 

 

If we assume that 𝜆0 > 0 then we can similarly show that  

 ∥ 𝑇𝑥0 + 𝜆0𝐴𝑥0 ∥>∥ 𝑇𝑥0 ∥=∥ 𝑇 ∥       ∀𝜆 < 0  

 

 Thus for 𝑥 ∈ 𝐷 either ∥ 𝑇𝑥 + 𝜆𝐴𝑥 ∥>∥ 𝑇 ∥, ∀𝜆 > 0 or ∥ 𝑇𝑥 + 𝜆𝐴𝑥 ∥>∥ 𝑇 ∥, ∀𝜆 < 0 and so 𝐷 = 𝑊1 ⋃⊕ 𝑊2 . 

 

Second. We now prove that 𝑊1 ≠ 𝜙 and 𝑊2 ≠ 𝜙. To show that 𝑊1 ≠ 𝜙 it is sufcient to prove that there exists 

𝑦0 ∈ 𝐷 such that  

 ∥ 𝑇𝑦0 + 𝜆𝐴𝑦0 ∥>∥ 𝑇𝑦0 ∥=∥ 𝑇 ∥ ∀𝜆 > 0.  

 

If possible suppose that 𝑊1 = 𝜙  i.e., for all 𝑥 ∈ 𝐷  , ∥ 𝑇𝑥 + 𝜆𝐴𝑥 ∥>∥ 𝑇𝑥 ∥=∥ 𝑇 ∥ ∀𝜆 < 0 . Since 𝑇𝑥  is not 

orthogonal to 𝐴𝑥 in the sense of Birkhoff–James so there exists 𝜆0 > 0 such that ∥ 𝑇𝑥 + 𝜆0𝐴𝑥0 ∥<∥ 𝑇𝑥 ∥=∥

𝑇 ∥. By the convexity of the norm function it now follows that  

 ∥ 𝑇𝑥 + 𝜆𝐴𝑥 ∥<∥ 𝑇𝑥 ∥=∥ 𝑇 ∥ ∀𝜆 ∈ (0, 𝜆0).  

 Choose 𝜆𝑥 such that 0 < 𝜆𝑥 < 𝑚𝑖𝑛{𝜆0, 1}. 

 

We consider the continuous function 𝑔: 𝑆𝑋 × [−1,1] ⟶ ℝ defined by  
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 𝑔(𝑥, 𝜆) =∥ 𝑇𝑥 + 𝜆𝐴𝑥 ∥.  

 

We have 𝑔(𝑥, 𝜆𝑥) =∥ 𝑇𝑥 + 𝜆𝑥𝐴𝑥 ∥<∥ 𝑇 ∥ and so by continuity of 𝑔 there exist 𝑟𝑥 , 𝛿𝑥 > 0 such that 𝑔(𝑦, 𝜆) <∥

𝑇 ∥ ∀𝑦 ∈ 𝐵(𝑥, 𝑟𝑥) ∩ 𝑆𝑋     𝑎𝑛𝑑    ∀𝜆 ∈ (𝜆𝑥 − 𝛿𝑥, 𝜆𝑥 + 𝛿𝑥).  Let 𝑦 ∈ 𝐵(𝑥, 𝑟𝑥) ⋂ 𝑆𝑋 . Then for 𝜆 ∈ (0, 𝜆𝑥)  there 

exists 𝑡 ∈ (0,1) such that  

 𝑇𝑦 + 𝜆𝐴𝑦 = 𝑡(𝑇𝑦) + (1 − 𝑡)(𝑇𝑦 + 𝜆𝑥𝐴𝑦) 

 ⇒∥ 𝑇𝑦 + 𝜆𝐴𝑦 ∥≤ 𝑡 ∥ 𝑇𝑦 ∥ +(1 − 𝑡) ∥ 𝑇𝑦 + 𝜆𝑥𝐴𝑦 ∥ 

 ⇒∥ 𝑇𝑦 + 𝜆𝐴𝑦 ∥<∥ 𝑇 ∥. 

Therefore 𝑔(𝑦, 𝜆) =∥ 𝑇𝑦 + 𝜆𝐴𝑦 ∥<∥ 𝑇 ∥ ∀𝑦 ∈ 𝐵(𝑥, 𝑟𝑥) ∩ 𝑆𝑋     𝑎𝑛𝑑    ∀𝜆 ∈ (0, 𝜆𝑥). 

 

Since 𝑔(𝑥, 𝜆) = 𝑔(−𝑥, 𝜆), it follows that ∥ 𝑇𝑦 + 𝜆𝐴𝑦 ∥<∥ 𝑇 ∥ ∀𝑦 ∈ 𝐵(−𝑥, 𝑟𝑥) ∩ 𝑆𝑋 and ∀𝜆 ∈ (0, 𝜆𝑥). Next for 

𝑧 ∈ 𝑆𝑋  and 𝑧 ∉ 𝐷 ∪ (−𝐷) , we have 𝑔(𝑧, 0) =∥ 𝑇𝑧 ∥<∥ 𝑇 ∥ . So by continuity of g there exist open balls 

𝐵(𝑧, 𝑟𝑧) ∩ 𝑆𝑋 and (−𝛿𝑧, 𝛿𝑧) such that 𝑔(𝑦, 𝜆) =∥ 𝑇𝑦 + 𝜆𝐴𝑦 ∥<∥ 𝑇 ∥ ∀𝑦 ∈ 𝐵(𝑧, 𝑟𝑧) ∩ 𝑆𝑋 and ∀𝜆 ∈ (−𝛿𝑧, 𝛿𝑧). 

 

Consider the open cover  

 {𝐵(𝑥, 𝑟𝑥) ∩ 𝑆𝑋 , 𝐵(−𝑥, 𝑟𝑥) ∩ 𝑆𝑋: 𝑥 ∈ 𝐷} ∪ {𝐵(𝑧, 𝑟𝑧) ∩ 𝑆𝑋: 𝑧 ∈ 𝑆𝑋 , 𝑧 ∉ 𝐷 ∪ −𝐷}  

Of  𝑆𝑋 . By the compactness of 𝑆𝑋 this cover has a finite subcover of the form  

 𝑆𝑋 ⊂∪𝑖=1
𝑛1 𝐵(𝑥𝑖 , 𝑟𝑥𝑖

) ∪𝑖=1
𝑛1 𝐵(−𝑥𝑖 , 𝑟𝑥𝑖

) ∪𝑖=1
𝑛2 𝐵(𝑧𝑘 , 𝑟𝑧𝑘

) ∩ 𝑆𝑋  

 for some positive integers 𝑛1, 𝑛2 . 

 

Choose 𝜇0 ∈∩𝑖=1
𝑛 (0, 𝜆𝑥𝑖

) ∩ (∩𝑘=1
𝑛2 (−𝛿𝑧𝑘

, 𝛿𝑧𝑘
) 

 

Now, since 𝑋 is finite dimensional so 𝑇 + 𝜇0𝐴 attains its norm at some  𝑤0 ∈ 𝑆𝑋 . However it fol- lows from the 

choice of 𝜇0 that, ∥ 𝑇 + 𝜇0𝐴 ∥=∥ (𝑇 + 𝜇0𝐴)𝑤0 ∥<∥ 𝑇 ∥ which contradicts that 𝑇 ⊥𝐵 𝐴. Thus it is not possible 

that for all 𝑥 ∈ 𝑆𝑋 , ∥ 𝑇𝑥 + 𝜆𝐴𝑥 ∥>∥ 𝑇𝑥 ∥=∥ 𝑇 ∥, ∀𝜆 < 0 and so  𝑊1 ≠ 𝜙 . Similar argument shows that  𝑊2 ≠ 𝜙 

. 

We finally show that 𝑊1, 𝑊2 forms a separation of D. 

 

Clearly �̅�1 ∩ 𝑊2 = 𝜙 and  𝑊1 ∩ �̅�2 = 𝜙 , otherwise we can find 𝑥 ∈ 𝐷 such that 𝑇𝑥 ⊥𝐵 𝐴𝑥. As 𝐷 = 𝑊1 ∪ 𝑊2 

and  �̅�1 ∩ 𝑊2 = 𝜙 , 𝑊1 ∩ �̅�2 = 𝜙 so we get a separation of D, this is a contradiction. Therefore there exists 

some 𝑥 ∈ 𝐷 such that 𝑇𝑥 ⊥𝐵 𝐴𝑥. This completes the proof of the theorem.  

  

Corollary 3.4 Let 𝑋 be a finite dimensional real normed linear space. Let 𝑇 ∈ 𝐿(𝑋) be such that 𝑇 attains its 

norm at only ±𝑥0 ∈ 𝑆𝑋. Then for any 𝐴 ∈ 𝐿(𝑋), 𝑇 ⊥𝐵 𝐴 ⇔ 𝑇𝑥0 ⊥𝐵 𝐴𝑥0 . 

Using the above Theorem 3.3 and Theorem 3.3 of Benítez et al. [?], we now prove the following characterization 

of finite dimensional real inner product spaces:  

  

Theorem 3.5 A finite dimensional real normed linear space 𝑋 is an inner product space if and only if for any 

linear operator 𝑇 on 𝑋, 𝑇 preserve its norm at 𝑒1, 𝑒2 ∈ 𝑆𝑋 implies 𝑇 preserve its norm at span{𝑒1, 𝑒2} ∩ 𝑆𝑋.  

 

Proof. Suppose that 𝑋 is an inner product space and 𝑇 is a linear operator on 𝑋. We will prove that if 𝑒𝑘 ∈ 𝑆𝑋 , ∥

𝑇𝑒𝑘 ∥=∥ 𝑇 ∥, and 𝜆𝑘 ∈ ℝ, 𝑘 = 1,2, then ∥ 𝑇(𝜆1𝑒1 + 𝜆2𝑒2) ∥=∥ 𝑇 ∥∥ 𝜆1𝑒1 + 𝜆2𝑒2 ∥. 

Applying the parallelogram equality we get  

 2(𝜆1
2 + 𝜆2

2) ∥ 𝑇 ∥2= 2 ∥ 𝑇(𝜆1𝑒1) ∥2+ 2 ∥ 𝑇(𝜆2𝑒2) ∥2 

 =∥ 𝑇(𝜆1𝑒1 + 𝜆2𝑒2) ∥2 +∥ 𝑇(𝜆1𝑒1 − 𝜆2𝑒2) ∥2 

 ≤∥ 𝑇 ∥2 (∥ (𝜆1𝑒1 + 𝜆2𝑒2) ∥2 +∥ (𝜆1𝑒1 − 𝜆2𝑒2) ∥2) 

 =∥ 𝑇 ∥2 (2 ∥ (𝜆1𝑒1) ∥2+ 2 ∥ (𝜆2𝑒2) ∥2) 

 = 2(𝜆1
2 + 𝜆2

2) ∥ 𝑇 ∥2 

So, the former inequality is actually an equality. 

Since 

 ∥ 𝑇(𝜆1𝑒1 ± 𝜆2𝑒2) ∥≤∥ 𝑇 ∥∥ (𝜆1𝑒1 ± 𝜆2𝑒2) ∥  

 necessarily  

 ∥ 𝑇(𝜆1𝑒1 ± 𝜆2𝑒2) ∥=∥ 𝑇 ∥∥ (𝜆1𝑒1 ± 𝜆2𝑒2) ∥  
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This completes the proof of necessary part of the theorem.  

 

Conversely suppose 𝑋 is a finite dimensional real normed linear space such that any 𝑇 ∈ 𝐿(𝑋) attains its norm at 

𝑒1, 𝑒2 ∈ 𝑆𝑋  implies that 𝑇  preserve its norm at 𝑠𝑝𝑎𝑛{𝑒1, 𝑒2} ∩ 𝑆𝑋  . We first show that any such operator T 

preserve its norm only at ±𝐷 where 𝐷 is a connected subset of  𝑆𝑋 . We note that 𝑇 ∈ 𝐿(𝑋) preserve its norm at 

𝑒1, 𝑒2 ∈ 𝑆𝑋 implies that T preserve its norm at 𝑠𝑝𝑎𝑛{𝑒1, 𝑒2} ∩ 𝑆𝑋 is equivalent to 

∥ 𝑇𝑥 ∥=∥ 𝑇 ∥∥ 𝑥 ∥, ∥ 𝑇𝑦 ∥=∥ 𝑇 ∥∥ 𝑦 ∥⇒∥ 𝑇(𝛼𝑥 + 𝛽𝑦) ∥=∥ 𝑇 ∥∥ 𝛼𝑥 + 𝛽𝑦 ∥, ∀𝛼, 𝛽 ∈ ℝ. 

f 𝑇 preserve its norm only at 𝑠𝑝𝑎𝑛{𝑒1, 𝑒2} ∩ 𝑆𝑋  , then we are done. If not then there exists some 𝑒3 ∈ 𝑆𝑋 −

𝑠𝑝𝑎𝑛{𝑒1, 𝑒2} such that T preserve its norm at  𝑒3 . We now show that T attains its norm at 𝑠𝑝𝑎𝑛{𝑒1, 𝑒2, 𝑒3} ∩ 𝑆𝑋. 

𝐶𝑜𝑛𝑠𝑖𝑑𝑒𝑟    𝑧 =
1

𝑟
(𝛼𝑒1 + 𝛽𝑒2 + 𝛾𝑒3) ∈ 𝑠𝑝𝑎𝑛{𝑒1, 𝑒2, 𝑒3} ∩ 𝑆𝑋     𝑤ℎ𝑒𝑟𝑒    𝛼, 𝛽, 𝛾    𝑎𝑟𝑒    𝑠𝑐𝑎𝑙𝑎𝑟𝑠    𝑎𝑛𝑑

∥ 𝛼𝑒1 + 𝛽𝑒2 + 𝛾𝑒3 ∥= 𝑟. 

 

Since z can be written as linear combination of 
𝛼𝑒1+𝛽𝑒2

∥𝛼𝑒1+𝛽𝑒2∥
 and 𝑒3 so by the hypothesis T attains its norm at z. 

 

Continuing in this way we conclude that 𝑇 preserve its norm only at the unit sphere of some subspace of 𝑋 and 

so 𝑇 preserve its norm only at ±𝐷 where 𝐷 is a connected subset of  𝑆𝑋 . So from Theorem 2.1 it follows that 

given any 𝑇, 𝐴 ∈ 𝐿(𝑋)  with 𝑇 ⊥𝐵 𝐴  there exists 𝑥 ∈ 𝑆𝑋  such that ⊥ 𝑇𝑥 ⊥=⊥ 𝑇 ⊥  and 𝑇𝑥 ⊥𝐵 𝐴𝑥 . Using the 

sufficient part of Theorem 3.3 of Benítez, Fernandez and Soriano [Paul et al., 2016] we conclude that X is an 

inner product space.  

  

Remark 3.6 The necessary part of the theorem holds for any inner product space, real or complex with any 

dimension, finite or infinite.  
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