

Engineering and

Technology Quarterly

Reviews

Gunawardhana, L. K. P. D. (2026), Enhancing Video Compression Efficiency for

Low-Bandwidth Environments with H.265/HEVC. In: Engineering and

Technology Quarterly Reviews, Vol.9, No.1, 26-35.

ISSN 2622-9374

The online version of this article can be found at:

https://www.asianinstituteofresearch.org/

Published by:

The Asian Institute of Research

The Engineering and Technology Quarterly Reviews is an Open Access publication. It may be read, copied, and

distributed free of charge according to the conditions of the Creative Commons Attribution 4.0 International

license.

The Asian Institute of Research Engineering and Technology Quarterly Reviews is a peer-reviewed International

Journal. The journal covers scholarly articles in the fields of Engineering and Technology, including (but not

limited to) Civil Engineering, Informatics Engineering, Environmental Engineering, Mechanical Engineering,

Industrial Engineering, Marine Engineering, Electrical Engineering, Architectural Engineering, Geological

Engineering, Mining Engineering, Bioelectronics, Robotics and Automation, Software Engineering, and

Technology. As the journal is Open Access, it ensures high visibility and an increase in citations for all research

articles published. The Engineering and Technology Quarterly Reviews aims to facilitate scholarly work on recent

theoretical and practical aspects of Education.

26

The Asian Institute of Research

Engineering and Technology Quarterly Reviews
Vol.9, No.1, 2026: 26-35

ISSN 2622-9374
Copyright © The Author(s). All Rights Reserved

Enhancing Video Compression Efficiency for

Low-Bandwidth Environments with H.265/HEVC

L. K. Pulasthi Dhananjaya Gunawardhana1

1 Department of Information & Communication Technology, University of Sri Jayewardenepura, Pitipana, Sri

Lanka. ORCID ID: 0000-0003-3486-7844

Abstract

This paper explores the functionality of the H.265/HEVC (High Efficiency Video Coding) standard in low-

bandwidth scenarios. We provide an overview of H.265's key features and mechanisms that make it suitable for

lower bandwidth environments. H.265, also known as High-Efficiency Video Coding (HEVC), is renowned for

delivering superior video quality at lower bitrates. We investigate the critical features of H.265 and its application

in low-bandwidth scenarios, providing insights into its efficiency, performance, and practical implementation. We

present experimental results demonstrating the performance improvements and benefits of H.265 regarding video

quality and bandwidth utilisation. The paper discusses potential applications and directions for optimising video

compression in constrained network conditions.

Keywords: H.265, Low Latency, Constant Bit Rate, Variable Bit Rate

1. Introduction

The primary objective of this research is to investigate and develop algorithms that minimise latency during video

streaming by employing innovative techniques. This research is not just theoretical but also has significant

practical implications for real-world applications. It explores multiple aspects: streaming size minimisation, video

quality preservation, and mobile device constraints. The research aims to provide a holistic approach to enhancing

the real-time streaming experience by addressing these factors.

Applications such as live streaming, video conferencing, and mobile multimedia services require low-latency

transmission while maintaining acceptable visual fidelity. The H.265/High Efficiency Video Coding (HEVC)

standard was developed to address these challenges, offering approximately 50% bitrate reduction compared to

H.264 for equivalent perceptual quality (Sullivan et al., 2012). Despite these advantages, latency and bandwidth

optimisation remain critical challenges in real-world deployments.

The proposed algorithm aims to preserve the quality of the output video in addition to reducing streaming size. It

is essential to ensure that the frame concealment technique has a minimal negative impact on the video, although

certain assumptions may need to be made to achieve this objective. Furthermore, this research acknowledges the

computational complexity limitations of mobile devices and considers them while developing the algorithm.

Asian Institute of Research Engineering and Technology Quarterly Reviews Vol.9, No.1, 2026

 27

The first compression seen in the H.26x generation is the H.261 compression scheme. H.261 is the International

Telecommunication Union (ITU) T video coding standard approved in November 1988. H.261 was initially

developed for transmission over ISDN lines, and the data rate is a multiple of 64 kbps. The encoding algorithm is

designed to work with video bitrates from 40 kbps to 2 Mbps. H.261 supports two video frame sizes: CIF (352x288

luminance with 176x144 chroma) and QCIF (176x144 with 88x72 chroma) with 4:2:0 sampling. There is also a

backwards-compatible trick to transfer still images at 704x576 luminance resolution and 352x288 chrominance

resolution. The H264 standard was developed by the ITU-T Video Coding Expert Group (VCEG) of the 16th

Study Group with ISO / IEC JTC1 Moving Picture Experts Group (MPEG)

2. Bandwidth-Adaptive Streaming

H.265's adaptive streaming capabilities enable it to adjust the video bitrate in real time based on the

available bandwidth. The H.26x family of video compression standards has evolved to address increasing

demands for compression efficiency and transmission quality. Early standards such as H.261 were designed for

ISDN-based communication, supporting limited resolutions and bitrates (Hanzo et al., 2007). Subsequent

standards introduced improved motion compensation and entropy coding techniques, culminating in the

H.265/HEVC standard. HEVC incorporates advanced features such as larger coding tree units, improved intra-

prediction, and enhanced entropy coding, enabling superior compression performance in bandwidth-constrained

environments (Sze et al., 2014). This is particularly crucial for users with limited access to high-speed

networks.

• Encoding Latency: The time taken to encode a video frame using the H.265 codec can significantly impact

overall latency. The research focuses on developing techniques to minimise the encoding latency while

ensuring efficient and high-quality compression. This can involve exploring parallel processing,

algorithmic optimisations, or hardware acceleration to expedite the encoding process.

• Transmission Latency: The time taken to transmit video frames from the server to the client over the

network introduces additional latency. The research investigates methods to reduce transmission latency,

such as optimising network protocols, leveraging adaptive streaming techniques, or implementing efficient

data compression and packetisation strategies.

• Decoding and Playback Latency: The time taken to decode and render the received video frames on the

client side also contributes to overall latency. The research considers approaches to streamline the decoding

and playback process, including efficient buffer management, synchronisation techniques, or hardware-

accelerated decoding to achieve real-time playback with minimal delay.

• End-to-End Latency Optimisation: Latency reduction in video streaming involves considering the entire

end-to-end pipeline, from the source video to its final display on the viewer's device. The research focuses

on holistic approaches that minimise latency across all stages, including encoding, transmission, decoding,

and rendering. This may involve designing and implementing innovative algorithms, protocols, or

mechanisms that optimise the end-to-end latency while maintaining video quality.

3. Video Quality Preservation

Ensuring high video quality is a critical objective in video streaming applications as it directly influences viewer

engagement and satisfaction. This research focuses on developing an algorithm that effectively preserves video

quality while minimising the streaming size through innovative frame concealment techniques. The proposed

algorithm aims to conceal lost or dropped frames without introducing noticeable artefacts or compromising the

overall visual fidelity of the streamed video content.

To achieve the preservation of video quality, the algorithm incorporates several essential considerations:

• Minimisation of Artefacts: The frame concealment process minimises introducing artefacts or distortions

that may degrade the perceived video quality. Artefacts such as blocking, blurring, or flickering can arise

from frame concealment techniques. Advanced concealment methods are tailored specifically for the H.265

codec to mitigate these artefacts. By carefully selecting frames for concealment and employing adaptive

concealment strategies, the algorithm strives to maintain high visual fidelity.

Asian Institute of Research Engineering and Technology Quarterly Reviews Vol.9, No.1, 2026

 28

• Accurate Motion Representation: Accurate motion representation is crucial for preserving video quality.

Using advanced motion estimation and compensation techniques, the algorithm conceals frames with

significant motion. This ensures that concealed frames accurately capture the underlying motion of the

video content, minimising motion-related artefacts and preserving the smoothness and fluidity of the video.

• Perceptual Quality Assessment: Objective and subjective quality assessment methods are employed to

evaluate the perceptual impact of the frame concealment process. Objective metrics such as structural

similarity index (SSIM), peak signal-to-noise ratio (PSNR), or video quality metrics (VQM) provide

quantitative measurements of the concealed video's visual quality compared to the original video.

Additionally, subjective evaluations involving human participants are conducted to gather feedback on the

perceived video quality. The algorithm is refined based on the results of these assessments to optimise video

quality preservation.

4. Mobile Device Constraints

In video streaming, it is crucial to consider the computational constraints of mobile devices, which have limited

processing power, memory, and battery life. This research finds the hardware limitations. It aims to develop an

algorithm that can effectively operate within these constraints while achieving low latency and high-quality video

streaming using the H.265 codec.

• Computational Efficiency: The algorithm optimises computational efficiency to ensure smooth video

streaming performance on mobile devices. This involves developing efficient data structures, algorithms,

and encoding techniques that minimise video processing tasks' computational complexity and resource

requirements. By leveraging hardware acceleration features available on modern mobile devices, such as

GPUs (Graphics Processing Units) or specialised video encoding/decoding units, the algorithm can

efficiently process H.265-encoded video streams while minimising the impact on device performance.

• Power Consumption Optimisation: Mobile devices are powered by batteries with limited capacity, and

power consumption optimisation is crucial to prolong battery life. The algorithm considers the power

consumption implications of video processing tasks and strives to minimise energy-intensive operations.

By utilising power-efficient algorithms, minimising unnecessary computations, and leveraging hardware

acceleration capabilities, the algorithm aims to reduce power consumption without compromising video

quality or latency.

• Adaptive Streaming: The algorithm incorporates adaptive streaming techniques to mitigate the impact of

mobile device constraints. Adaptive streaming dynamically adjusts the video quality and streaming bitrate

based on network conditions and device capabilities. The algorithm can provide a smooth streaming

experience on mobile devices by adapting the video quality in real time, even in challenging network

conditions or resource-constrained environments. This ensures that the video streaming remains responsive

and optimised for the specific capabilities of the mobile device.

5. Random Frame Dropping

Random frame dropping is a technique employed to reduce the streaming size of H.265-encoded video files while

maintaining an acceptable level of video quality. The algorithm selectively drops frames randomly during the

streaming process to achieve compression without significantly impacting the visual experience.

Frame Selection Strategy: The algorithm employs a frame selection strategy to determine which frames to drop.

Random frame dropping involves randomly selecting frames from the video stream and discarding them. The

frame selection process considers the desired compression ratio, target streaming size, and acceptable video quality

degradation. By adopting a random approach, the algorithm avoids bias towards specific frames or sequences,

ensuring a more balanced distribution of dropped frames throughout the video.

• Keyframe Preservation: Keyframes, also known as intra-frames, are essential for maintaining video

coherence and ensuring accurate decoding. The algorithm focuses on retaining keyframes while selectively

dropping non-key frames to preserve video quality. By preserving keyframes and dropping non-key frames,

Asian Institute of Research Engineering and Technology Quarterly Reviews Vol.9, No.1, 2026

 29

the algorithm minimises the impact on video quality and ensures the ability to decode and display

subsequent frames accurately.

• Compression and Bitrate Adjustment: Random frame dropping inherently contributes to video

compression by reducing the number of frames transmitted during streaming. This compression effect

reduces the streaming size, as fewer frames need to be transmitted over the network. Additionally, bitrate

adjustment techniques can be employed to optimise the streaming size further while considering network

bandwidth limitations. By dynamically adjusting the bitrate based on available network resources, the

algorithm optimises the compression while minimising the impact on video quality.

• Quality Assessment and Thresholds: The algorithm employs quality assessment techniques to ensure that

the dropped frames do not significantly degrade the visual experience. Objective metrics such as PSNR

(Peak Signal-to-Noise Ratio) or SSIM (Structural Similarity Index) may be utilised to evaluate the impact

of random frame dropping on video quality. The algorithm sets thresholds for acceptable quality

degradation, ensuring that the dropped frames do not fall below a certain quality threshold. The algorithm

can balance compression and video quality preservation by incorporating these quality thresholds.

5.1. Importing Libraries

Successful implementation of the random frame-dropping algorithm heavily relies on leveraging relevant libraries

and frameworks for video processing, random number generation, and image manipulation.

Figure 1: Frame Dropping Code - Importing Libraries

The following libraries are imported to support the development of the algorithm:

• OpenCV (cv2) - OpenCV is a popular computer vision library that provides various functions and tools

for video processing, image manipulation, and computer vision tasks. This research uses OpenCV to read

video frames, write frames to disk, and manipulate images. The cv2 module from OpenCV is imported to

access its functions and objects.

• Random - The random module is a built-in Python library that provides various functions for generating

random numbers and making random selections. In this research, the random library is imported to create

random numbers for frame dropping. The random module's function generates a random integer within a

specified range.

5.2. Open Video Capture

The video capture process is a fundamental step in video processing and analysis. This research uses the OpenCV

library to open and access the video file for further frame processing and analysis—the cv2. The VideoCapture()

function creates a video capture object, allowing the algorithm to retrieve individual frames from the video source.

Figure 2: Frame Dropping Code - Open Video Capture

• Video Source Selection—The cv2.The VideoCapture() function takes the video file path as its parameter.

Depending on the location of the video file in the system, the path can be absolute or relative. Specifying

the correct path to the video file is essential to ensuring successful video capture.

• Video Capture Initialisation—The cv2.VideoCapture() function initialises the video capture object by

associating it with the specified video file. After the video file is opened, the capture object is ready to read

frames from the video source.

Asian Institute of Research Engineering and Technology Quarterly Reviews Vol.9, No.1, 2026

 30

• Retrieving Video Properties—Various video properties can be accessed and examined after creating the

video capture object. These properties include the number of frames in the video, frame rate, resolution,

duration, and more. These properties provide essential information about the video that can be used for

further processing and analysis.

• Frame Retrieval - Once the video capture object is initialised, individual frames can be retrieved from the

video source. The read() method of the video capture object is employed to read the next frame in the video

sequence. The returned values include a Boolean indicator representing the success of the frame retrieval

operation and the actual frame data as an image array.

6. Bit Depth Compression

Bit depth compression is a fundamental aspect of multimedia data processing that aims to reduce the number of

bits required to represent the colour information in images and videos. Decreasing the bit depth can significantly

reduce the data size, enabling more efficient storage and transmission. However, the challenge lies in achieving

this compression while preserving the visual quality of the content. Bit-depth compression techniques are crucial

in reducing file sizes and maintaining perceptually acceptable visual fidelity. This section explores various bit-

depth compression techniques, including uniform quantisation, dithering, error diffusion, non-uniform

quantisation, adaptive quantisation, hybrid compression, and the potential application of machine learning and

deep learning. Understanding these techniques is essential for optimising compression efficiency and ensuring

high-quality multimedia content in applications such as image and video compression, storage, and transmission.

The focus is on reducing latency by utilising the H.265 codec, known for its efficient video compression

capabilities. The objectives include minimising streaming size by concealing lost or dropped frames, preserving

video quality, considering hardware computational limitations of mobile devices, and exploring innovative

techniques such as frame duplication and dropping.

The methodology section outlines the research design and approach to achieving the objectives. It includes details

on the data collection process, experimental setup, and algorithm development using Python. The research

methodology ensures rigorous analysis and evaluation of the proposed techniques, providing reliable results and

insights.

7. Bit Depth Compression Techniques

• Uniform Quantisation: Uniform quantisation is a straightforward technique that can reduce the bit depth

by dividing the range of colour values into more minor levels. While simple, it may result in visible

quantisation artefacts.

• Dithering: Dithering can be applied during the quantisation process to distribute the quantisation error and

reduce artefacts. Algorithms like Floyd-Steinberg, Jarvis-Judice-Ninke, or Stucki can be utilised for

dithering.

• Error Diffusion: Error diffusion techniques distribute the quantisation error across neighbouring pixels,

reducing its visibility and preserving more details. Algorithms such as Floyd-Steinberg, Sierra, or Stucki

can be employed for error diffusion.

• Non-Uniform Quantisation: Non-uniform quantisation techniques allocate more bits to visually important

colour values and fewer bits to less essential values, considering human visual perception. Logarithmic

quantisation or perceptual quantisation can be used for non-uniform quantisation.

• Adaptive Quantisation: Adaptive quantisation adjusts the quantisation step size dynamically based on the

image or video content. It allocates more bits to areas with detail and fewer to areas with low detail,

enhancing compression efficiency. Algorithms for adaptive quantisation analyse the content and determine

optimal quantisation parameters for each frame or scene.

• Hybrid Compression Techniques: Hybrid compression approaches combine bit depth compression with

other methods, such as spatial or temporal. Integration of techniques like H.264 or H.265 (HEVC), which

Asian Institute of Research Engineering and Technology Quarterly Reviews Vol.9, No.1, 2026

 31

incorporate bit depth and spatial and temporal compression, can achieve higher compression ratios while

maintaining visual quality.

• Machine Learning and Deep Learning: Machine learning techniques, such as convolutional neural

networks (CNNs) and generative adversarial networks (GANs), can be explored to improve compression

efficiency and reduce artefacts. These models learn complex mappings between high-precision colour

values and their compressed representations, enhancing compression while preserving visual quality.

7.1. Defining the compress_bit_depth function

The compress_bit_depth function compresses the bit depth of the video frames while preserving the visual quality.

It takes three parameters: video_path (the path of the input video file), output_path (the path where the compressed

video will be saved), and target_bit_depth (the desired bit depth for compression).

Figure 3: Bit Depth Compress Code -Compress_bit_Depth Function

Open the

video file.

The function uses cv2.VideoCapture to open the input video file

specified by video_path.

It retrieves the frame rate, width, height, and total number of frames

from the video using the get functions of the video capture object

(vidcap).

Create the

output video

file.

The function creates a VideoWriter object using cv2.VideoWriter.

The output_path, fourcc (the four-character code representing the video

codec), fps, (frame_width, frame_height), and isColor=True parameters

are passed to initialise the VideoWriter object.

Iterate

through each

frame and

compress:

The function utilises a loop that iterates num_frames times, where

num_frames is the total number of frames in the video.

Within the loop, it reads each frame of the video using vidcap.read() and

assigns it to the frame variable.

Apply bit

depth

compression:

If the frame is successfully read (success = True), the function calls the

apply_bit_depth_compression function to compress the bit depth of the

frame.

The compressed frame is then stored in the compressed_frame variable.

Write the

compressed

frame:

The compressed frame is written to the output video file using out.

write(compressed_frame).

Table 1: Defining the apply_bit_depth_compression function

7.2. Buffer Management

Buffer management is crucial to achieving low latency in video streaming. It involves efficient control and

synchronisation of buffers at both the encoder and decoder sides. Buffer management strategies aim to minimise

buffering delays, maintain synchronisation between the encoder and decoder, and enable adaptive buffering to

handle variable network conditions.

Asian Institute of Research Engineering and Technology Quarterly Reviews Vol.9, No.1, 2026

 32

• Buffer Occupancy Control: The algorithm employs strategies to control the buffer occupancy at the

encoder and decoder sides. The incoming video frames are buffered at the encoder side to ensure a steady

supply of frames for encoding. The buffer occupancy is controlled to prevent excessive delay and maintain

a continuous frame flow to the decoder. The output frames are buffered at the decoder side to smooth out

network latency variations and ensure a consistent playback experience.

• Synchronisation between Encoder and Decoder: To achieve low latency, synchronisation between the

encoder and decoder is essential. The algorithm ensures that the encoder and decoder maintain a

synchronised operation by managing the buffer sizes and handling frame transmission and reception. This

synchronisation minimises the delay introduced by buffering and ensures smooth video playback without

noticeable latency.

• Adaptive Buffering Techniques: Adaptive buffering techniques handle varying network conditions and

optimise buffer occupancy. These techniques dynamically adjust the buffer sizes and control the

transmission rate to adapt to available network bandwidth and latency changes. The algorithm can

dynamically adjust buffer occupancy and transmission rates by monitoring network conditions in real-time

to maintain optimal video streaming performance.

• Buffer Management Algorithms: These algorithms consider factors like network bandwidth, latency, and

video complexity to adjust the buffer sizes and transmission rate dynamically for optimal streaming

performance. The rate control algorithms aim to prevent buffer overflows or underflows and maintain a

consistent video streaming experience with minimal latency.

• Error Resilience Mechanisms: These mechanisms employ techniques like forward error correction (FEC)

or retransmission to recover lost or corrupted video frames. By incorporating error resilience techniques,

the algorithm can mitigate the impact of packet loss on buffer occupancy and maintain the overall streaming

quality and low latency.

Overall, efficient buffer management, synchronisation between the encoder and decoder, and adaptive buffering

techniques are vital in achieving low latency in video streaming. The algorithm carefully controls the buffer

occupancy, adjusts transmission rates, and employs error resilience mechanisms to optimise video streaming

performance, reduce buffering delays, and deliver end-users a seamless and responsive streaming experience.

7.3. Bit Rate Adjustment

The bit rate adjustment is an essential technique in video streaming to optimise the trade-off between video quality

and bandwidth consumption. By adjusting the bit rate, the amount of data transmitted per unit of time can be

modified, thereby impacting the quality and size of the video stream. This technique aims to achieve efficient

video delivery while maintaining an acceptable level of visual quality. There are several approaches to adjust the

bit rate of a video stream, including:

• Constant Bit Rate (CBR)

• Variable Bit Rate (VBR)

7.3.1. Constant Bit Rate (CBR)

Constant Bit Rate (CBR) is a bit rate adjustment technique commonly used in video streaming and encoding. The

video is encoded and transmitted in CBR at a fixed bit rate throughout the entire stream. Each frame is allocated

a predetermined number of bits, ensuring a consistent data rate.

CBR is often suitable for applications or systems where network bandwidth is stable and consistent, and

maintaining a constant data rate is a priority. It can also benefit video-on-demand services or offline video

encoding, where the encoding parameters are fixed, and bandwidth constraints are known in advance.

By implementing and evaluating CBR encoding techniques and comparing them with other bit rate adjustment

methods, the research aims to identify the most suitable approach for achieving efficient video streaming with low

latency and reduced bandwidth consumption.

Asian Institute of Research Engineering and Technology Quarterly Reviews Vol.9, No.1, 2026

 33

Figure 4a: CBR Code

Figure 4b: CBR Code

7.3.2. Variable Bit Rate (VBR)

Variable Bit Rate (VBR) is a bit rate adjustment technique commonly used in video encoding and streaming.

Unlike Constant Bit Rate (CBR), which maintains a fixed bit rate throughout the video stream, VBR dynamically

adjusts the bit rate based on the content complexity. It allocates more bits to complex scenes and fewer to less

complex scenes, resulting in more efficient bandwidth utilisation and improved video quality.

The main characteristics and considerations of VBR are as follows:

• Dynamic Bit Rate: VBR allows for varying the bit rate frame-by-frame. It analyses the content complexity

and allocates various bits to each frame. This adaptive approach ensures that more bits are earmarked for

scenes with high motion or intricate details while fewer bits are assigned to scenes with low motion or simple

backgrounds.

• Improved Video Quality: By allocating more bits to complex scenes, VBR can achieve higher video quality

compared to CBR. It reduces compression artefacts and preserves more details in visually demanding portions

of the video, resulting in a better viewing experience for the audience.

• Efficient Bandwidth Utilisation: VBR optimises bandwidth utilisation by adjusting the bit rate dynamically.

It reduces the overall file size by allocating fewer bits to less complex scenes, requiring fewer bits for faithful

reproduction. This enables efficient streaming over networks with varying bandwidth capacities.

• Variable File Size: The file size can fluctuate since the bit rate varies throughout the video. VBR-encoded

videos may have larger file sizes compared to CBR-encoded videos. However, this variation in file size allows

for a better balance between video quality and storage/bandwidth requirements.

Asian Institute of Research Engineering and Technology Quarterly Reviews Vol.9, No.1, 2026

 34

• Transcoding Challenges: VBR-encoded videos may present challenges during transcoding or further

processing. Since the bit rate varies, it can affect the synchronisation of audio and video streams, requiring

additional synchronisation adjustments during post-processing.

• Complexity and Compatibility: Implementing VBR encoding requires more computational resources than

CBR due to the analysis and allocation of bits on a frame-by-frame basis. Additionally, VBR-encoded videos

may have compatibility issues with some playback devices or streaming platforms that only support specific

video encoding formats.

VBR is widely used in various video streaming applications, such as online video platforms, video-on-demand

services, and live streaming. It offers a flexible and efficient approach to maintaining high-quality video while

adapting to the dynamic nature of content complexity.

Figure 5a: VBR Code

Figure 5b: VBR Code

8. Conclusion

In conclusion, this research proposal addresses the challenge of low-latency video streaming using the H.265

codec. Throughout the research, several key findings and contributions have emerged. Firstly, the random frame-

dropping technique proved to be ineffective in reducing latency. However, bit depth compression demonstrated

the potential to reduce the streaming size without significantly compromising video quality. The implemented

algorithm successfully adjusted the bit depth of the video frames, leading to improved compression efficiency.

Furthermore, the research explored the concepts of constant bit rate (CBR) and variable bit rate (VBR). It was

found that CBR maintained a consistent bit rate, ensuring a predictable streaming experience but potentially

resulting in wasted bandwidth. On the other hand, VBR adjusted the bit rate dynamically, optimising streaming

efficiency while considering the video content's complexity.

Asian Institute of Research Engineering and Technology Quarterly Reviews Vol.9, No.1, 2026

 35

Another significant finding of this research project is the effectiveness of the frame duplication-dropping technique

in reducing latency during video streaming. Latency refers to the delay or lag between the time a frame is captured

or encoded and the time it is displayed on the viewer's screen. High latency can negatively impact the real-time

streaming experience, causing delays and synchronisation issues. To address this challenge, the research

implemented a frame duplication-dropping algorithm. This technique identifies consecutive frames that contain

identical visual information, typically resulting from minimal scene changes or motion. The research improved

real-time streaming performance by selectively dropping these duplicate frames, effectively reducing latency. The

frame duplication dropping algorithm intelligently analyses the video frames and determines which frames can be

safely dropped without significantly impacting the overall video quality. By eliminating redundant frames, the

algorithm optimises the streaming process, allowing for smoother and faster delivery of the video content.

Moreover, the research considered mobile device constraints, acknowledging the computational limitations of

these devices. This consideration led to the development of optimised algorithms for mobile platforms, ensuring

efficient video streaming even on resource-constrained devices. In conclusion, this research project contributes to

low-latency video streaming by exploring various techniques to minimise streaming size, preserve video quality,

and reduce latency. The implemented Python algorithms, combined with quantitative data analysis, provide

valuable insights into the performance and effectiveness of different strategies. The findings of this research have

implications for applications in areas such as live video streaming, online gaming, and real-time video

communication. The developed algorithms and insights can guide the development of more efficient video

streaming systems, improving the user experience by minimising latency and optimising bandwidth utilisation.

This research project highlights the potential of using H.265 video codec with innovative algorithms to achieve

low-latency video streaming. The research findings contribute to the body of knowledge in this domain and open

avenues for further exploration and refinement of video streaming techniques.

Funding: Not applicable.

Conflict of Interest: The authors declare no conflict of interest.

Informed Consent Statement/Ethics Approval: Not applicable.

Declaration of Generative AI and AI-assisted Technologies: This study has not used any generative AI tools

or technologies in the preparation of this manuscript.

References

Farooq, V. M. V., & Mahammad, S. (2017). A study on H.26x family of video streaming compression techniques.

International Journal of Pure and Applied Mathematics, 117(10, Special Issue), 63–72.

Hanzo, L., Cherriman, P., & Streit, J. (2007). Video compression and communications. John Wiley & Sons.

International Telecommunication Union. (n.d.). ITU-T recommendation database. https://www.itu.int/ITU-

T/recommendations/rec.aspx?rec=13189.

Kemp, S. (2020, February 18). Digital 2020: Sri Lanka. DataReportal. https://datareportal.com/reports/digital-

2020-sri-lanka.

Sullivan, G. J., Ohm, J.-R., Han, W.-J., & Wiegand, T. (2012). Overview of the high-efficiency video coding

(HEVC) standard. IEEE Transactions on Circuits and Systems for Video Technology, 22(12), 1649–1668.

DOI: 10.1109/TCSVT.2012.2221191

Sze, V., Budagavi, M., & Sullivan, G. J. (2014). High-efficiency video coding (HEVC): Algorithms and

architectures. Springer.

Sze, V. (2014). Entropy coding in HEVC. In Integrated circuits and systems (pp. 209–274). Springer.

https://www.itu.int/ITU-T/recommendations/rec.aspx?rec=13189
https://www.itu.int/ITU-T/recommendations/rec.aspx?rec=13189
https://datareportal.com/reports/digital-2020-sri-lanka
https://datareportal.com/reports/digital-2020-sri-lanka

	Enhancing Video Compression Efficiency for Low-Bandwidth Environments with H.265/HEVC
	L. K. Pulasthi Dhananjaya Gunawardhana1
	5.1. Importing Libraries
	5.2. Open Video Capture
	7.1. Defining the compress_bit_depth function
	Table 1: Defining the apply_bit_depth_compression function
	7.2. Buffer Management
	7.3. Bit Rate Adjustment
	7.3.1. Constant Bit Rate (CBR)

	7.3.2. Variable Bit Rate (VBR)

	8. Conclusion

