

Journal of Health and Medical Sciences

Chowdhury, M. S. A., Ahsan-uz-Zaman, M., Hasan, M. R., & Hossain, I. (2025), Prevalence and Determinants of Upper Extremity Repetitive Strain Injuries (RSI) Among Handloom Weavers in Tangail District, Bangladesh. *Journal of Health and Medical Sciences*, 8(3), 78-85.

ISSN 2622-7258

DOI: 10.31014/aior.1994.08.03.242

The online version of this article can be found at: https://www.asianinstituteofresearch.org/

Published by:

The Asian Institute of Research

The *Journal of Health and Medical Sciences* is an Open Access publication. It may be read, copied, and distributed free of charge according to the conditions of the Creative Commons Attribution 4.0 International license.

The Asian Institute of Research *Journal of Health and Medical Sciences* is a peer-reviewed International Journal. The journal covers scholarly articles in the fields of Medicine and Public Health, including medicine, surgery, ophthalmology, gynecology and obstetrics, psychiatry, anesthesia, pediatrics, orthopedics, microbiology, pathology and laboratory medicine, medical education, research methodology, forensic medicine, medical ethics, community medicine, public health, community health, behavioral health, health policy, health service, health education, health economics, medical ethics, health protection, environmental health, and equity in health. As the journal is Open Access, it ensures high visibility and the increase of citations for all research articles published. The *Journal of Health and Medical Sciences* aims to facilitate scholarly work on recent theoretical and practical aspects of Health and Medical Sciences.

The Asian Institute of Research

Journal of Health and Medical Sciences Vol.8, No.3, 2025: 78-85 ISSN 2622-7258 Copyright © The Author(s). All Rights Reserved DOI: 10.31014/aior.1994.08.03.242

Prevalence and Determinants of Upper Extremity Repetitive Strain Injuries (RSI) Among Handloom Weavers in Tangail District, Bangladesh

Md. Sunyet Alam Chowdhury^{1,2}, Md. Ahsan-uz-Zaman², Md. Rownok Hasan², Irin Hossain²

Correspondence: Md. Sunyet Alam Chowdhury, Immunization Officer, PATH; saniyeatchowdhury@yahoo.com

Abstract

Background: Handloom weaving is a critical source of rural employment in Bangladesh but entails high ergonomic risk, predisposing workers to upper extremity repetitive strain injuries (RSIs). Evidence on prevalence and determinants of RSIs in Bangladeshi handloom workers is limited. Objective: To determine the prevalence, anatomical distribution, and predictors of upper extremity RSIs among handloom weavers in Tangail district. Methods: A community-based cross-sectional study was conducted among 303 male handloom workers in Pathrail Union, Delduar Upazila. Data were collected via structured interviews and the Standardized Nordic Musculoskeletal Questionnaire. Socio-demographic, occupational, and ergonomic factors were assessed. Logistic regression identified independent predictors of RSIs. Results: The prevalence of RSIs was highest in the neck (60.7%), shoulders (56.8%), and wrists (55.8%). Repetitive movements ≥ 4 hours/day, awkward posture, prolonged working hours, low income, and limited education were independently associated with RSIs. Prevalence increased with years of experience: 58.7% (<10 years), 72.2% (10−20 years), and 85.9% (>20 years). Severe cases often required job modification and had multi-site involvement. Conclusion: Upper extremity RSIs are highly prevalent among Bangladeshi handloom workers, reflecting a combination of ergonomic strain and socioeconomic vulnerability. Interventions targeting workplace ergonomics, work hours, and socio-economic support are essential to safeguard worker health and sustain the handloom sector.

Keywords: Handloom Weaving, Repetitive Strain Injury, Upper Extremity, Ergonomics, Bangladesh

1. Introduction

The handloom industry in Bangladesh is more than an economic enterprise; it is a living archive of cultural heritage, tradition, and the livelihoods of millions. As the second-largest source of rural employment after agriculture, the sector directly supports approximately 1.5 million weavers, dyers, and artisans, with another half-million dependent on it indirectly (Bangladesh Bureau of Statistics [BBS], 2020; Ahmed et al., 2021). Deeply rooted in the rural socio-economic fabric, handloom weaving provides a vital non-agricultural safety net, particularly in northern districts such as Tangail, a nationally recognized weaving hub (Pande, n.d.; Rahman et al.,

¹ PATH

² Department of Occupational and Environmental Health, National Institute of Preventive and Social Medicine

2018). The iconic muslins, jamdanis, and vibrant sarees produced on these looms not only contribute significantly to the national economy but also represent an enduring symbol of Bangladesh's identity and artistry (Fatema, 2023).

Yet, the preservation of this heritage comes at a steep human cost. The very characteristics that define handloom weaving—manual precision, repetitive motions, and prolonged static postures—expose workers to serious occupational hazards. Unlike automated power looms, handloom weaving demands sustained neck and back flexion, repetitive upper-limb movements, and constant force application, creating an environment rife with ergonomic risks (Choobineh et al., 2007; Ghosh et al., 2011). These conditions predispose workers to a spectrum of work-related musculoskeletal disorders (WMSDs), particularly repetitive strain injuries (RSIs) of the neck, shoulders, elbows, wrists, and upper back (Punnett & Wegman, 2004). For many weavers, financial precarity, limited education, and restricted bargaining power intensify this vulnerability, forcing them to endure pain in order to survive—an endurance that perpetuates both ill health and poverty (Liu et al., 2023; World Health Organization [WHO], 2019).

Evidence from global weaving communities underscores the universality of this problem. Studies among Iranian carpet weavers report strikingly high musculoskeletal symptom prevalence, particularly in the shoulders (46.9%), lower back (42.2%), and wrists (36.5%) (Choobineh et al., 2007). Similar patterns emerge in India, where weavers in West Bengal show high rates of low back pain linked to prolonged sitting and years of experience (Das & Ghosh, 2011). Comparable findings have been reported from Ethiopia and Pakistan, where awkward postures, long working hours, and repetitive tasks drive disability and chronic pain among informal weavers (Geto et al., 2025; Fan et al., 2022). Collectively, these studies confirm that the biomechanical demands of weaving, across diverse cultural contexts, consistently generate high musculoskeletal morbidity.

Bangladesh-specific evidence paints a similar picture. Studies document a high prevalence of pain among weavers, particularly in the lower back, knees, and shoulders (Koiri, 2020; R et al., 2024). A study in North Bengal reported that 69.2% of weavers experienced musculoskeletal pain, most commonly in the knees (46.8%) and lower back (42.6%) (Tavakkol et al., 2020). However, existing research is limited in scope. Few studies focus specifically on upper extremity RSIs, which represent a critical subset of injuries directly linked to weaving mechanics. Addressing this gap requires granular analysis of anatomical sites, functional impairment, and the sociodemographic and ergonomic determinants of injury.

This study, therefore, sought to provide a detailed epidemiological profile of upper extremity RSIs among handloom weavers in Tangail district of Bangladesh. The study aimed to determine the prevalence and severity of RSIs in different upper body regions, identify both ergonomic (such as repetitive motion and awkward posture) and socio-economic (such as income and education) risk factors that predict these injuries, and examine the cumulative impact of years of work experience on the progression and chronicity of RSIs. By moving beyond prevalence estimates to deeper causal understanding, the study intends to generate evidence that can inform targeted, culturally appropriate ergonomic interventions and policy responses ultimately safeguarding the health and productivity of Bangladesh's weaving communities.

2. Methodology

2.1. Study Design and Setting

The research employed a community-based, descriptive cross-sectional study design aimed at quantifying the prevalence and associated determinants of upper extremity repetitive strain injuries (RSIs) among handloom workers. The study was situated in Pathrail Union, Delduar Upazila, Tangail District, Bangladesh, an area historically renowned as a major hub of the traditional handloom weaving industry. Pathrail Union encompasses a land area of 18.97 km² and, according to the Population and Housing Census of 2011, has a population of 31,803. Its proximity to Dhaka (approximately 82.7 km) and socio-economic reliance on handloom weaving justified its selection as the study site.

2.2. Study Population and Eligibility Criteria

The study population consisted of male handloom workers aged >18 years actively engaged in weaving during the study period (September 2021 to November 2021)

- **Inclusion criteria:** (i) individuals with at least one year of continuous employment in handloom weaving, (ii) permanent residents of Pathrail Union, and (iii) those providing informed consent.
- Exclusion criteria: (i) workers with acute upper limb trauma unrelated to occupational exposure, (ii) individuals unwilling to participate, and (iii) workers temporarily absent during the data collection period.

2.3. Sample Size Determination

The sample size was calculated using the single proportion formula. The resulting sample size was 384, which, after accounting for a 10% non-response rate, yielded a target of 422 participants. However, due to operational constraints arising from the COVID-19 pandemic, including limited field mobility and adherence to a 22-day data collection mandate set forth by Bangladesh Medical University (BMU), the final feasible sample size was 303 respondents.

2.4. Sampling Frame and Distribution

Participants were selected from multiple villages within Pathrail Union to ensure representativeness:

- Bishnupur (n = 20)
- Chandi (n = 83)
- Krishnanagar (n = 77)
- UP Road (n = 30)
- Sutradhar Para (n = 25)
- Gain Para (n = 4)
- Puraton Pathrail (n = 40)
- Uttar Nalua (n = 24)

Two primary loom categories were represented: pit loom workers (n = 255, 84.2%) and Chittaranjan loom workers (n = 48, 15.8%).

2.5. Data Collection Procedure

Data collection was undertaken by the principal investigator, ensuring standardization of administration and minimizing inter-observer variability. Interviews were conducted in the daytime working hours at the respondents' worksites to avoid disrupting productivity.

A structured interviewer-administered questionnaire, adapted from existing occupational health research tools and contextualized for the Bangladeshi weaving industry, was used. The questionnaire comprised three modules:

- 1. Socio-demographic characteristics age, marital status, religion, educational attainment, monthly income, family type, and household size.
- 2. Occupational and ergonomic factors loom type, years of weaving experience, daily working hours, posture, rest periods, overtime, work station design and ergonomic risk exposures.
- 3. Musculoskeletal morbidity evaluated using the Standardized Nordic Musculoskeletal Questionnaire (SNMQ), a validated instrument widely employed in occupational health epidemiology.

The questionnaire was pre-tested among 30 handloom workers in a non-study union to verify clarity, comprehensibility, and cultural appropriateness. Minor modifications were introduced in terminology and sequencing based on pilot feedback.

2.6. Ethical Considerations

Prior to the initiation of the study, ethical approval was obtained from the Institutional Review Board (IRB) of the National Institute of Preventive and Social Medicine (NIPSOM) (Reference No.: NIPSOM/IRB/2021/18, Date: 13 December 2021). All procedures adhered strictly to the principles outlined in the Declaration of Helsinki (2013 revision), and national ethical guidelines applicable to health research in Bangladesh. Informed consent was obtained from each participant following a clear explanation of the study's purpose, procedures, potential risks, and benefits. Written consent was secured through signed forms, while participants with literacy limitations provided thumb impressions in the presence of a witness. Confidentiality and anonymity were assured through the assignment of unique identification numbers, and no personally identifiable information was stored or disclosed.

3. Results

3.1. Socio-demographic characteristics of participants

A total of 303 handloom workers were surveyed (Table 1). The majority were either below 30 years (32.3%) or between 30 and 39 years (28.1%), indicating a predominantly young and middle-aged workforce. Over two-thirds (64.7%) reported a monthly income of less than BDT10,000, indicating considerable socioeconomic vulnerability. Educational attainment was low, with 41.9% having completed primary education or less. Family size was most commonly 4–6 members (46.9%). In terms of work experience, 39.9% had <10 years, 32.0% had 10–20 years, and 28.1% had >20 years in the industry, suggesting both an influx of younger workers and a significant segment with long-term cumulative exposure.

Characteristic Category		n	%
Age group	<30 years	98	32.3
	30–39 years	85	28.1
	40–49 years	67	22.1
	≥50 years	53	17.5
Monthly income	BDT 6,000	92	30.4
	BDT6,000-BDT10,000	104	34.3
	>BDT10,000	107	35.3
Education level	≤Primary	127	41.9
	Secondary	102	33.7
	≥Diploma	74	24.4
Family size	1–3 members	107	35.3
	4–6 members	142	46.9
	≥7 members	54	17.8
Work experience	<10 years	121	39.9
	10–20 years	97	32.0
	>20 years	85	28.1

Table 1: Socio-demographic characteristics of handloom workers (N = 303)

3.2. Prevalence and distribution of upper extremity RSI

The prevalence of upper extremity repetitive strain injuries (RSI) was high across multiple body regions (Table 2). The neck (60.7%), shoulder (56.8%), and wrist (55.8%) were the most affected sites, followed by the upper back (34.3%) and elbow (30.4%). Severe cases defined as pain lasting more than 7 days or requiring job modification were particularly common in the wrist (62 cases) and neck (67 cases). Functional impact was substantial, with a high overlap between severe cases, work reduction, and medical consultation, especially for wrist-related symptoms.

Table 2: Prevalence of upper extremity RSI by body region ($N = 303$	Table 2: Preva	lence of upper	extremity RSI by	v body region	(N = 303)
---	----------------	----------------	------------------	---------------	-----------

Body region	Prevalence n (%)	Severe cases* n	Work reduction n	Medical consultation n
Neck	184 (60.7)	67	58	49
Shoulder	172 (56.8)	59	52	44
Wrist	169 (55.8)	62	61	53
Elbow	92 (30.4)	31	27	24
Upper back	104 (34.3)	38	33	29

^{*}Severe = pain >7 days or requiring job modification.

3.3. Association between ergonomic risk factors and RSI

Work-related ergonomic exposures were strongly associated with RSI prevalence (Table 3). Repetitive movements for \geq 4 hours/day were significantly associated with neck (78.3%), shoulder (74.6%), and wrist (81.5%) symptoms (p <0.001). Neck RSI was particularly associated with bending/twisting movements (85.4%), while wrist RSI was linked to repetitive flexion or twisting (89.2%). Shoulder symptoms were significantly higher among workers performing tasks with arms elevated above shoulder height (68.6%, p = 0.003). Awkward postures and overtime work were also correlated with increased risk across all major anatomical sites (all p <0.001).

Table 3: Association between work-related risk factors and RSI prevalence (N = 303)

Risk factor	Exposed	Neck RSI	Shoulder RSI	Wrist RSI	p-
	n	%	%	%	value†
Repetitive movements (≥4	254	78.3	74.6	81.5	< 0.001
hr/day)					
Bending/twisting neck	287	85.4	_	_	< 0.001
Bending/twisting wrist	279	_	_	89.2	< 0.001
Arm above shoulder	137	_	68.6	_	0.003
Awkward posture	192	71.9	67.2	65.1	< 0.001
Overtime (≥2 hr/day)	187	69.5	64.7	71.7	< 0.001

[†]Chi-square test.

3.4. Predictors of upper extremity RSI

Multivariate logistic regression analysis identified several independent predictors of RSI (Table 4). Repetitive movements remained the strongest predictor (AOR = 4.27, 95% CI: 2.89–6.31, p <0.001), accounting for 38.2% of the population attributable risk (PAR). Prolonged working hours (>10/day) were also significant (AOR = 3.18, 95% CI: 1.92–5.27), as was low monthly income (<6,000; AOR = 2.76, 95% CI: 1.64–4.65). Additional predictors included awkward posture (AOR = 2.43), low education (AOR = 2.15), and overtime \geq 2 hours/day (AOR = 1.98). Collectively, these findings highlight a combined effect of physical workload, socioeconomic vulnerability, and limited ergonomic awareness.

Table 4: Multivariate logistic regression predictors of upper extremity RSI (N = 303)

Predictor	Adjusted OR	95% CI	p-value	PAR%
Repetitive movements	4.27	2.89-6.31	< 0.001	38.2
Working hours >10/day	3.18	1.92-5.27	< 0.001	27.5
Monthly income <6,000	2.76	1.64-4.65	0.001	22.1
Awkward posture	2.43	1.51-3.91	0.002	18.7
Low education (≤Primary)	2.15	1.28-3.61	0.009	15.3
Overtime ≥2 hr/day	1.98	1.22-3.22	0.012	12.6

^{*}PAR = Population Attributable Risk.

3.5. RSI prevalence by work experience

The prevalence and severity of RSI increased markedly with years of service (Table 5). Workers with <10 years of experience had an overall RSI prevalence of 58.7%, while those with 10–20 years and >20 years recorded 72.2% and 85.9%, respectively. Long-term workers (>20 years) also exhibited higher rates of multi-site involvement (78.8%) and chronicity (54.1%), along with the greatest proportion requiring job modification (42.4%). These trends indicate a clear dose—response relationship between cumulative ergonomic exposure and musculoskeletal morbidity.

Table 5: RSI patterns by work experience (N = 303)

Work experience	RSI prevalence %	Multi-site RSI‡ %	Chronic§ %	Job modification %
<10 years	58.7	41.3	22.3	18.2
10–20 years	72.2	63.9	37.1	29.9
>20 years	85.9	78.8	54.1	42.4

 \pm Multi-site = \geq 2 affected body regions.

§Chronic = symptoms >90 days

4. Discussion

This study reveals a workforce in crisis: handloom weavers in Tangail face alarmingly high rates of upper extremity RSIs, driven by both ergonomic strain and socio-economic vulnerability. The prevalence of pain was highest in the neck (60.7%), shoulders (56.8%), and wrists (55.8%), reflecting the biomechanics of weaving. Sustained neck flexion, repetitive shoulder elevation during shuttle passing, and forceful wrist deviation during weft beating explain this distribution (Choobineh et al., 2007; Musculoskeletal disorders and workplace factors, 1997). These findings align with international studies among Iranian, Indian, and Ethiopian weavers, though prevalence rates in Bangladesh appear even higher, possibly due to loom design, fewer rest breaks, and production pressures (Choobineh et al., 2007; Das & Ghosh, 2011; Geto et al., 2025).

The burden is not only medical but economic. Severe wrist RSIs were closely tied to work reduction, directly undermining both individual income and the sector's productivity. This mirrors findings in other manual labor sectors—such as garment manufacturing in Sri Lanka and construction in India, where upper limb disorders drive absenteeism and presenteeism (Thacker et al., 2023; Epstein et al., 2018).

Risk factor analysis highlighted repetitive movements as the strongest predictor (AOR = 4.27, PAR% = 38.2%), confirming ergonomic principles documented globally (Silverstein et al., 1987; Yassi, 1997). Yet, socio-economic determinants emerged as equally potent: long working hours (>10/day), low income, and limited education independently increased risk (AORs 2.15–3.18). These findings highlight the vicious cycle of poverty and pain, where economic necessity compels overwork, amplifying ergonomic strain and denying recovery time (Loewenson, 1998; International Labour Organization [ILO], 2013; Törner & Pousette, 2009).

The most compelling evidence of occupational causation was the dose–response relationship with work experience. Prevalence of RSIs escalated from 58.7% in weavers with <10 years of experience to 85.9% in those with >20 years. Chronicity (>90 days of symptoms) and multi-site involvement also increased dramatically with years of exposure. This progression mirrors WMSD trajectories seen in other physically demanding professions such as nursing and mining, where cumulative trauma leads to irreversible disability (Rabiei et al., 2021; Smedley, 2003).

5. Conclusion

Handloom weavers of Bangladesh sustain a national heritage at profound personal cost. The high prevalence of severe upper extremity RSIs is not an inevitable feature of weaving but a preventable outcome of modifiable ergonomic and socio-economic conditions. Protecting these artisans demands a paradigm shift—from viewing

pain as part of the craft to actively designing it out of the system. A coordinated response involving government, NGOs, public health professionals, ergonomists, and the weavers themselves is essential. Safeguarding their health is not only a moral imperative but also a strategic necessity for ensuring the sustainability and vitality of Bangladesh's handloom heritage.

Author contributions:

- a. Conception and design: MSAC and IH
- b. Acquisition, analysis, and interpretation of data: MSAC, MAUZ, and MRH
- c. Manuscript drafting and revising it critically: MSAC, MAUZ, and MRH
- d. Approval of the final version of the manuscript: MSAC, and IH
- e. Guarantor accuracy and integrity of the work: MSAC and IH

Acknowledgement: The authors would like to thank all the participants for participating in this study. We are grateful to the Department of Occupational and Environmental Health, National Institute of Preventive and Social Medicine (NIPSOM), Dhaka.

Funding: This research was conducted as part of the thesis work of Md. Sunyet Alam Chowdhury at the National Institute of Preventive and Social Medicine (NIPSOM), Dhaka. It was carried out as a requirement of the course curriculum and received no external funding.

Conflict of interest: The authors declare that there is no conflict of interest.

Declaration of Generative AI and AI-assisted Technologies: This study has not used any generative AI tools or technologies in the preparation of this manuscript.

References

- Ahmed, Z., Hussain, A. H. M. B., Alam, R., & Singha, A. K. (2021). Perils and prospects of Manipuri handloom industries in Bangladesh: An ethnic community development perspective. *GeoJournal*. https://doi.org/10.1007/s10708-020-10365-3
- Bangladesh Bureau of Statistics (BBS). (2020). *Handloom Census of Bangladesh 2018*. Dhaka: Ministry of Planning.
 - https://sid.portal.gov.bd/sites/default/files/files/sid.portal.gov.bd/page/7f374d98_b787_40d6_9f33_2ea7eae 1a6f1/HandloomCensus 20148 HD-compressed.pdf
- Choobineh, A., Hosseini, M., Lahmi, M., Khani Jazani, R., & Shahnavaz, H. (2007). Musculoskeletal problems in Iranian hand-woven carpet industry: Guidelines for workstation design. *Applied Ergonomics*, 38(5), 617–624. https://doi.org/10.1016/j.apergo.2006.06.005
- Das, B., & Ghosh, T. (2011). Assessment of Ergonomical and Occupational Health Related Problems Among VDT Workers of West Bengal, India. *Asian Journal of Medical Sciences*, *1*(2), 26–31. https://doi.org/10.3126/ajms.v1i2.2992
- Epstein, S., Sparer, E. H., Tran, B. N., Ruan, Q. Z., Dennerlein, J. T., Singhal, D., & Lee, B. T. (2018). Prevalence of Work-Related Musculoskeletal Disorders Among Surgeons and Interventionalists. *JAMA Surgery*, 153(2), e174947. https://doi.org/10.1001/jamasurg.2017.4947
- Fan, L. J., Liu, S., Jin, T., Gan, J. G., Wang, F. Y., Wang, H. T., & Lin, T. (2022). Ergonomic risk factors and work-related musculoskeletal disorders in clinical physiotherapy. *Frontiers in Public Health*, 10. https://doi.org/10.3389/fpubh.2022.1083609
- Fatema, B. (2023, January 17). A Study on the Traditional Art of Jamdani Weaving: A Representation of Intangible Bangladeshi Cultural Heritage. https://www.researchgate.net/publication/367190648_A_Study_on_the_Traditional_Art_of_Jamdani_Weaving A Representation of Intangible Bangladeshi Cultural Heritage
- Geto, A. K., Daba, C., Desye, B., Berihun, G., & Berhanu, L. (2025). Prevalence of work-related musculoskeletal disorder and its associated factors among weavers in low- and middle-income countries: a systematic review and meta-analysis. *BMJ Open*, *15*(8), e093124. https://doi.org/10.1136/bmjopen-2024-093124

- Ghosh, T., Gangopadhyay, S., & Das, B. (2011). A comparative ergonomic study of work-related upper extremity musculo skeletal disorder among the unskilled and skilled surgical blacksmiths in West Bengal, India. *Indian Journal of Occupational and Environmental Medicine*, 15(3), 127. https://doi.org/10.4103/0019-5278.93203
- ILO. (2013). Women and men in the informal economy: A statistical picture (2nd ed.). Geneva: International Labour
 Office. https://www.ilo.org/sites/default/files/wcmsp5/groups/public/@dgreports/@stat/documents/publication/wcms 234413.pdf
- Koiri, P. (2020). Occupational health problems of the handloom workers: A cross sectional study of Sualkuchi, Assam, Northeast India. *Clinical Epidemiology and Global Health*. https://doi.org/10.1016/j.cegh.2020.04.025
- Liu, R., Liu, H.-C., Shi, H., & Gu, X. (2023). Occupational health and safety risk assessment: A systematic literature review of models, methods, and applications. *Safety Science*, 160(106050), 106050. https://doi.org/10.1016/j.ssci.2022.106050
- Loewenson, R. H. (1998). Health Impact of Occupational Risks in the Informal Sector in Zimbabwe. *International Journal of Occupational and Environmental Health*, 4(4), 264–274. https://doi.org/10.1179/oeh.1998.4.4.264
- Musculoskeletal disorders and workplace factors. A critical review of epidemiologic evidence for work-related musculoskeletal disorders of the neck, upper extremity, and low back. (1997). https://doi.org/10.26616/nioshpub97141
- Pande, S. (n.d.). Problems and Prospects of Handloom Industries: A Regional Study. *International Journal of Management, Accounting and Economics*, 9(11), 2022–2383. https://doi.org/10.5281/zenodo.7433077
- Punnett, L., & Wegman, D. H. (2004). Work-related musculoskeletal disorders: the epidemiologic evidence and the debate. *Journal of Electromyography and Kinesiology*, *14*(1), 13–23. https://doi.org/10.1016/j.jelekin.2003.09.015
- R, S., John, D. M., & I, S. (2024). Impact of Remedial Exercise Training on Work-Related Musculoskeletal Morbidity Among Handloom Weavers in Kanchipuram District: A Quasi-experimental Study. *Cureus*. https://doi.org/10.7759/cureus.67217
- Rabiei, H., Malakoutikhah, M., Vaziri, M. H., & Salehi Sahlabadi, A. (2021). The Prevalence of Musculoskeletal Disorders among Miners around the World: A Systematic Review and Meta-Analysis. *Iranian Journal of Public Health*. https://doi.org/10.18502/ijph.v50i4.5992
- Rahman, M., Islam, M., Esha, B., Sultana, N. and Chakravorty, S. (2018) Consumer Buying Behavior towards Online Shopping An Empirical Study on Dhaka City, Bangladesh. Cogent Business & Management, 5, Article 1514940. References Scientific Research Publishing. (2018). Scirp.org. https://www.scirp.org/reference/referencespapers?referenceid=2979032
- Silverstein, B. A., Fine, L. J., & Armstrong, T. J. (1987). Occupational factors and carpal tunnel syndrome. *American Journal of Industrial Medicine*, 11(3), 343–358. https://doi.org/10.1002/ajim.4700110310
- Smedley, J. (2003). Risk factors for incident neck and shoulder pain in hospital nurses. *Occupational and Environmental Medicine*, 60(11), 864–869. https://doi.org/10.1136/oem.60.11.864
- Tavakkol, R., Kavi, E., Hassanipour, S., Rabiei, H., & Malakoutikhah, M. (2020). The global prevalence of musculoskeletal disorders among operating room personnel: A systematic review and meta-analysis. *Clinical Epidemiology and Global Health*. https://doi.org/10.1016/j.cegh.2020.03.019
- Thacker, H., Yasobant, S., Viramgami, A., & Saha, S. (2023). Prevalence and determinants of (work-related) musculoskeletal disorders among dentists A cross-sectional evaluative study. *Indian Journal of Dental Research: Official Publication of Indian Society for Dental Research*, 34(1), 24–29. https://doi.org/10.4103/ijdr.jjdr_376_22
- Törner, M., & Pousette, A. (2009). Safety in construction a comprehensive description of the characteristics of high safety standards in construction work, from the combined perspective of supervisors and experienced workers. *Journal of Safety Research*, 40(6), 399–409. https://doi.org/10.1016/j.jsr.2009.09.005
- World Health Organization (WHO). (2019). Protecting workers' health. Geneva: WHO. https://www.who.int/publications/i/item/9789241514781
- Yassi, A. (1997). Repetitive strain injuries. *The Lancet*, *349*(9066), 1700–1701. https://doi.org/10.1016/s0140-6736(05)62675-x