Journal of Health and Medical Sciences
ISSN 2622-7258
Published: 09 December 2022
Air Chemical Quality and Noise Level in Tourism City Center of Bali 2022
I Nyoman Gede Suyasa, Ni Made Marwati, Ni Ketut Rusminingsih
Poltekkes Kemenkes Denpasar, Indonesia
Download Full-Text Pdf
10.31014/aior.1994.05.04.248
Pages: 71-79
Keywords: Air Chemical Quality, Bali, Noise Level, Tourism
Abstract
Tourist destinations activities in Bali, particularly in Tabanan, Badung and Gianyar increased the crowded traffic jam, and impacted to air chemical quality and noise level. This is an observational study in tourist destinations in Tabanan, Badung, Gianyar Regency, totaling 18 sample points. Sampling of air chemistry CO, O3, SO2 and NO2 are measured using an imfinger and analyzed by spectrophotometer, noise level using a sound level meter. The data obtained were analyzed using a free sample t test, both parametric and non-parametric. The results of air chemistry research for CO in Tabanan Regency is 23.33 gr/Nm3, Badung Regency 521, 67 gr/Nm3 and Gianyar Regency 1050.00 gr/Nm3. Meanwhile O3 parameter in Tabanan Regency is 0.17 gr/Nm3, Badung Regency 0, 20 gr/Nm3 and Gianyar Regency 0.12 gr/Nm3. SO2 parameter in Tabanan Regency is 100.00 gr/Nm3, Badung Regency 57.62 gr/Nm3 and Gianyar Regency 41.62 gr/Nm3. NO2 parameter in Tabanan Regency measured 1 ,83 gr/Nm3, Badung Regency 1.83 gr/Nm3 and Gianyar Regency 0.95 gr/Nm3. The concentration is still below the requirements of the Governor of Bali regulation number 16 of 2016 concerning Environmental Quality Standards and Environmental Damage Standard Criteria. While the noise level in Tabanan Regency is 68.55 dB, Badung Regency 70.68 dB and Gianyar Regency 67.85 dB exceeding the maximum noise level for residential area activities of 55 dB. In conclusion, the air chemistry in regencies of Tabanan, Badung, Gianyar are below the standards of local government. Nevertheless, there is an exceeding noise level in those regencies.
References
Diener, A., & Mudu, P. (2021). How can vegetation protect us from air pollution? A critical review on green spaces’ mitigation abilities for air-borne particles from a public health perspective - with implications for urban planning. Science of the Total Environment, 796, 148605. https://doi.org/10.1016/j.scitotenv.2021.148605
Girach, I. A., & Nair, P. R. (2014). Carbon monoxide over Indian region as observed by MOPITT. Atmospheric Environment, 99, 599–609. https://doi.org/10.1016/j.atmosenv.2014.10.019
González, A. E. (2022). Overview of Noise Control Techniques and Methods. IntechOpen, 32(tourism), 137–144. https://www.intechopen.com/books/advanced-biometric-technologies/liveness-detection-in-biometrics
Kim, K. H., Lee, S. B., Woo, D., & Bae, G. N. (2015). Influence of wind direction and speed on the transport of particle-bound PAHs in a roadway environment. Atmospheric Pollution Research, 6(6), 1024–1034. https://doi.org/10.1016/j.apr.2015.05.007
Nurdjanah, N. (2015). CO2 Emissions from Vehicle in Denpasar. Jurnal Penelitian Transportasi Darat, 17(1), 1–14.
Panov, Y., Gomelia, N., Ivanenko, O., Vahin, A., & Leleka, S. (2020). Assessment of the effect of oxygen and carbon dioxide concentrations on gas evolution during heat treatment of thermoanthracite carbon material. Journal of Ecological Engineering, 21(2), 139–149. https://doi.org/10.12911/22998993/116326
Perraud, V., Horne, J. R., Martinez, A. S., Kalinowski, J., Meinardi, S., Dawson, M. L., Wingen, L. M., Dabdub, D., Blake, D. R., Gerber, R. B., & Finlayson-Pitts, B. J. (2015). The future of airborne sulfur-containing particles in the absence of fossil fuel sulfur dioxide emissions. Proceedings of the National Academy of Sciences of the United States of America, 112(44), 13514–13519. https://doi.org/10.1073/pnas.1510743112
Radam, I. F., & Heriyatna, E. (2018). A Correlation Analysis of Noise Level and Traffic Flow : Case of One Way Road in Banjarmasin. Asian Journal of Applied Sciences, 06(02), 60–64.
Rajé, F., Tight, M., & Pope, F. D. (2018). Traffic pollution: A search for solutions for a city like Nairobi. Cities, 82(February), 100–107. https://doi.org/10.1016/j.cities.2018.05.008
Rozante, J. R., Rozante, V., Alvim, D. S., Manzi, A. O., Chiquetto, J. B., D’Amelio, M. T. S., & Moreira, D. S. (2017). Variations of Carbon Monoxide Concentrations in the Megacity of São Paulo from 2000 to 2015 in Different Time Scales. Atmosphere, 8(81), 1–17. https://doi.org/10.3390/atmos8050081
Shykoff, B. E., & Warkander, D. E. (2012). Exercise carbon dioxide (CO2) retention with inhaled CO 2 and breathing resistance. Undersea and Hyperbaric Medicine, 39(4), 815–828.
Srikandi, F. (2008). Polusi Air Dan Udara. Kanisius.
Strode, S. A., Duncan, B. N., Yegorova, E. A., Kouatchou, J., Ziemke, J. R., & Douglass, A. R. (2015). Implications of carbon monoxide bias for methane lifetime and atmospheric composition in chemistry climate models. Atmospheric Chemistry and Physics, 15(20), 11789–11805. https://doi.org/10.5194/acp-15-11789-2015
Yasar, A., Haider, R., Tabinda, A. B., Kausar, F., & Khan, M. (2013). Comparison of engine emissions from heavy, medium, and light vehicles for CNG, diesel, and gasoline fuels. Polish Journal of Environmental Studies, 22(4), 1277–1281.
Zeng, S., & Zhang, Y. (2017). The Effect of Meteorological Elements on Continuing Heavy Air Pollution : A Case Study in the Chengdu Area during the 2014 Spring Festival. Atmosphere, 8(71), 7–19. https://doi.org/10.3390/atmos8040071