Effect of PM2.5 Exposure among Children with Asthma: A Systematic Review
top of page
Asian Institute of Research, Journal Publication, Journal Academics, Education Journal, Asian Institute
Asian Institute of Research, Journal Publication, Journal Academics, Education Journal, Asian Institute

Journal of Health and Medical Sciences

ISSN 2622-7258

Screen Shot 2018-08-12 at 1.24.09 AM.png
Screen Shot 2018-08-12 at 1.24.02 AM.png
Screen Shot 2018-08-12 at 1.23.57 AM.png
Screen Shot 2018-08-12 at 1.23.52 AM.png
crossref
doi
open access

Published: 30 November 2023

Effect of PM2.5 Exposure among Children with Asthma: A Systematic Review

Clara Virginia Allun, Dian Andriani Ratna Dewi, Putri Aisya Azhari, Suzandi Imam Pradana, Fitria Nurul Aini, Wahyu Iman Utomo, Rafif Muzakki, Evania Marisa Rumbobiar

The Republic of Indonesia Defense University, Army Central Hospital Gatot Soebroto

journal of social and political sciences
pdf download

Download Full-Text Pdf

doi

10.31014/aior.1994.06.04.287

Pages: 145-153

Keywords: PM2.5, Exposure, Children, Asthma, Respiratory

Abstract

Introduction: Particulate matter (PM), which encompasses tiny particles (PM2.5) and inhalable coarse particles (PM10), is a significant environmental issue that carries potential health consequences, particularly for children, including those who have asthma. This systematic review aims to examine the association between exposure to PM2.5 and the exacerbation of childhood asthma, focusing on publications published between 2018 and 2023. Methods: A comprehensive PubMed search retrieved 147 records, leading to the selection of 11 articles for full-text assessment. Subsequently, four studies meeting the criteria were included in this review, following a meticulous selection process. These studies were rigorously assessed for methodology, study design, and key findings. Results: The chosen studies' findings indicate a negative correlation between short-term PM2.5 exposure and a range of lung function indicators in children diagnosed with asthma. This suggests that prenatal PM2.5 exposure may have enduring effects on respiratory health. Discussion: Childhood asthma, marked by complex pathophysiology involving chronic inflammation and hyperresponsive airways, is indeed influenced by PM2.5 exposure, underlining a multifaceted challenge for public health. Conclusion: This systematic review underscores the importance of addressing environmental PM2.5 as a critical public health concern, particularly for children with asthma. Although the studies in this analysis offer valuable insights, they also underscore the need for additional research to understand the intricate link between exposure to PM2.5 and the worsening of pediatric asthma.

References

  1. Anenberg, S. C., Henze, D. K., Tinney, V., Kinney, P. L., Raich, W., Fann, N., Malley, C. S., Roman, H., Lamsal, L., Duncan, B., Martin, R. V., van Donkelaar, A., Brauer, M., Doherty, R., Jonson, J. E., Davila, Y., Sudo, K., & Kuylenstierna, J. C. I. (2018). Estimates of the Global Burden of Ambient PM2.5, Ozone, and NO2 on Asthma Incidence and Emergency Room Visits. Environmental Health Perspectives, 126(10). https://doi.org/10.1289/EHP3766

  2. Baek, J., Kash, B. A., Xu, X., Benden, M., Roberts, J., & Carrillo, G. (2020). Effect of Ambient Air Pollution on Hospital Readmissions among the Pediatric Asthma Patient Population in South Texas: A Case-Crossover Study. International Journal of Environmental Research and Public Health, 17(13), 4846. https://doi.org/10.3390/ijerph17134846

  3. Chi, R., Li, H., Wang, Q., Zhai, Q., Wang, D., Wu, M., Liu, Q., Wu, S., Ma, Q., Deng, F., & Guo, X. (2019). Association of emergency room visits for respiratory diseases with sources of ambient PM2.5. Journal of Environmental Sciences, 86, 154–163. https://doi.org/10.1016/j.jes.2019.05.015

  4. Duan, R., Niu, H., Yu, T., Huang, K., Cui, H., Chen, C., Yang, T., & Wang, C. (2021). Adverse effects of short-term personal exposure to fine particulate matter on the lung function of patients with chronic obstructive pulmonary disease and asthma: a longitudinal panel study in Beijing, China. Environmental Science and Pollution Research, 28(34), 47463–47473. https://doi.org/10.1007/s11356-021-13811-y

  5. Fan, J., Li, S., Fan, C., Bai, Z., & Yang, K. (2016). The impact of PM2.5 on asthma emergency department visits: a systematic review and meta-analysis. Environmental Science and Pollution Research, 23(1), 843–850. https://doi.org/10.1007/s11356-015-5321-x

  6. Garrett, M. (2014). Encyclopedia of Transportation: Social Science and Policy. SAGE Publications, Inc. https://doi.org/10.4135/9781483346526

  7. Godri Pollitt, K. J., Maikawa, C. L., Wheeler, A. J., Weichenthal, S., Dobbin, N. A., Liu, L., & Goldberg, M. S. (2016). Trace metal exposure is associated with increased exhaled nitric oxide in asthmatic children. Environmental Health, 15(1), 94. https://doi.org/10.1186/s12940-016-0173-5

  8. Hazlehurst, M. F., Carroll, K. N., Loftus, C. T., Szpiro, A. A., Moore, P. E., Kaufman, J. D., Kirwa, K., LeWinn, K. Z., Bush, N. R., Sathyanarayana, S., Tylavsky, F. A., Barrett, E. S., Nguyen, R. H. N., & Karr, C. J. (2021). Maternal exposure to PM2.5 during pregnancy and asthma risk in early childhood. Environmental Epidemiology, 5(2), e130. https://doi.org/10.1097/EE9.0000000000000130

  9. He, L., Norris, C., Cui, X., Li, Z., Barkjohn, K. K., Brehmer, C., Teng, Y., Fang, L., Lin, L., Wang, Q., Zhou, X., Hong, J., Li, F., Zhang, Y., Schauer, J. J., Black, M., Bergin, M. H., & Zhang, J. J. (2021). Personal Exposure to PM 2.5 Oxidative Potential in Association with Pulmonary Pathophysiologic Outcomes in Children with Asthma. Environmental Science & Technology, 55(5), 3101–3111. https://doi.org/10.1021/acs.est.0c06114

  10. Higgins, J. P. T., Altman, D. G., Gotzsche, P. C., Juni, P., Moher, D., Oxman, A. D., Savovic, J., Schulz, K. F., Weeks, L., & Sterne, J. A. C. (2011). The Cochrane Collaboration’s tool for assessing the risk of bias in randomized trials. BMJ, 343(oct18 2), d5928–d5928. https://doi.org/10.1136/bmj.d5928

  11. Hirose, K., Iwata, A., Tamachi, T., & Nakajima, H. (2017). Allergic airway inflammation: key players beyond the Th2 cell pathway. Immunological Reviews, 278(1), 145–161. https://doi.org/10.1111/imr.12540

  12. Hsu, S.-C., Chang, J.-H., Lee, C.-L., Huang, W.-C., Hsu, Y.-P., Liu, C.-T., Jean, S.-S., Huang, S.-K., & Hsu, C.-W. (2020). Differential time-lag effects of ambient PM2.5 and PM2.5-bound PAHs on asthma emergency department visits. Environmental Science and Pollution Research, 27(34), 43117–43124. https://doi.org/10.1007/s11356-020-10243-y

  13. Huo, Y., & Zhang, H.-Y. (2018). Genetic Mechanisms of Asthma and the Implications for Drug Repositioning. Genes, 9(5), 237. https://doi.org/10.3390/genes9050237

  14. Keet, C. A., Keller, J. P., & Peng, R. D. (2018). Long-Term Coarse Particulate Matter Exposure Is Associated with Asthma among Children in Medicaid. American Journal of Respiratory and Critical Care Medicine, 197(6), 737–746. https://doi.org/10.1164/rccm.201706-1267OC

  15. Kim, S., Lee, J., Park, S., Rudasingwa, G., Lee, S., Yu, S., & Lim, D. H. (2020). Association between Peak Expiratory Flow Rate and Exposure Level to Indoor PM2.5 in Asthmatic Children, Using Data from the Escort Intervention Study. International Journal of Environmental Research and Public Health, 17(20), 7667. https://doi.org/10.3390/ijerph17207667

  16. Lam, J., Sutton, P., Kalkbrenner, A., Windham, G., Halladay, A., Koustas, E., Lawler, C., Davidson, L., Daniels, N., Newschaffer, C., & Woodruff, T. (2016). A Systematic Review and Meta-Analysis of Multiple Airborne Pollutants and Autism Spectrum Disorder. PLOS ONE, 11(9), e0161851. https://doi.org/10.1371/journal.pone.0161851

  17. Meghji, J., Mortimer, K., Agusti, A., Allwood, B. W., Asher, I., Bateman, E. D., Bissell, K., Bolton, C. E., Bush, A., Celli, B., Chiang, C.-Y., Cruz, A. A., Dinh-Xuan, A.-T., El Sony, A., Fong, K. M., Fujiwara, P. I., Gaga, M., Garcia-Marcos, L., Halpin, D. M. G., … Marks, G. B. (2021). Improving lung health in low-income and middle-income countries: from challenges to solutions. The Lancet, 397(10277), 928–940. https://doi.org/10.1016/S0140-6736(21)00458-X

  18. Mustafić, H., Jabre, P., Caussin, C., Murad, M. H., Escolano, S., Tafflet, M., Périer, M.-C., Marijon, E., Vernerey, D., Empana, J.-P., & Jouven, X. (2012). Main Air Pollutants and Myocardial Infarction. JAMA, 307(7), 713. https://doi.org/10.1001/jama.2012.126

  19. Nevada Department of Environmental Protection. (n.d.). Particulate Matter Pollution Fact Sheet. 1–4. https://ndep.nv.gov/baqp/monitoring/docs/particulate_matter.pdf

  20. Pothirat, C., Chaiwong, W., Liwsrisakun, C., Bumroongkit, C., Deesomchok, A., Theerakittikul, T., Limsukon, A., Tajarernmuang, P., & Phetsuk, N. (2019). Acute effects of air pollutants on daily mortality and hospitalizations due to cardiovascular and respiratory diseases. Journal of Thoracic Disease, 11(7), 3070–3083. https://doi.org/10.21037/jtd.2019.07.37

  21. Sun, L., Fu, J., Lin, S.-H., Sun, J.-L., Xia, L., Lin, C.-H., Liu, L., Zhang, C., Yang, L., Xue, P., Wang, X., Huang, S., Han, X., Chen, H.-L., Huang, M.-S., Zhang, X., Huang, S.-K., & Zhou, Y. (2020). Particulate matter of 2.5 μm or less in diameter disturbs the balance of TH17/regulatory T cells by targeting glutamate oxaloacetate transaminase 1 and hypoxia-inducible factor 1α in an asthma model. Journal of Allergy and Clinical Immunology, 145(1), 402–414. https://doi.org/10.1016/j.jaci.2019.10.008

  22. Welcome to the 2015 Annual Meeting. (2015). Academic Emergency Medicine, 22(S1). https://doi.org/10.1111/acem.12656

  23. Yan, W., Wang, X., Dong, T., Sun, M., Zhang, M., Fang, K., Chen, Y., Chen, R., Sun, Z., & Xia, Y. (2020). The impact of prenatal exposure to PM2.5 on childhood asthma and wheezing: a meta-analysis of observational studies. Environmental Science and Pollution Research, 27(23), 29280–29290. https://doi.org/10.1007/s11356-020-09014-6

  24. Zhang, Y., Yin, Z., Zhou, P., Zhang, L., Zhao, Z., Norbäck, D., Zhang, X., Lu, C., Yu, W., Wang, T., Zheng, X., Zhang, L., & Zhang, Y. (2022). Early-life exposure to PM2.5 constituents and childhood asthma and wheezing: Findings from China, Children, Homes, Health study. Environment International, 165, 107297. https://doi.org/10.1016/j.envint.2022.107297

  25. Zhou, J., Lei, R., Xu, J., Peng, L., Ye, X., Yang, D., Yang, S., Yin, Y., & Zhang, R. (2022). The Effects of Short-Term PM2.5 Exposure on Pulmonary Function among Children with Asthma—A Panel Study in Shanghai, China. International Journal of Environmental Research and Public Health, 19(18), 11385. https://doi.org/10.3390/ijerph191811385

bottom of page