top of page
Asian Institute of Research, Journal Publication, Journal Academics, Education Journal, Asian Institute
Asian Institute of Research, Journal Publication, Journal Academics, Education Journal, Asian Institute

Journal of Health and Medical Sciences

ISSN 2622-7258

Screen Shot 2018-08-12 at 1.24.09 AM.png
Screen Shot 2018-08-12 at 1.24.02 AM.png
Screen Shot 2018-08-12 at 1.23.57 AM.png
Screen Shot 2018-08-12 at 1.23.52 AM.png
open access

Published: 01 August 2022

Sex Differences in Muscle Activity During Drop-Jump Landing Motion

Kazumasa Nakagawa, Reika Takamatsu, Miku Matsushima

Takasaki University of Health and Welfare (Japan), Itota Orthopedics Meieki Sports Clinic (Japan)

journal of social and political sciences
pdf download

Download Full-Text Pdf



Pages: 28-35

Keywords: Anterior Cruciate Ligament Injuries, One-Leg Drop-Jump Landing, Sex Difference, Adductor Magnus Muscle, Gluteus Medius Muscle, Injury Prevention


This study investigated the effect of hip joint muscles' activity on dynamic knee-joint valgus angle during one-leg drop-jump landing motion in male and female subjects. Twenty-four healthy university students (11 males and 13 females) participated in the study. Surface electromyography was used to measure muscle activity during a one-leg landing motion. A gender difference was observed: males showed greater activity in the gluteus medius muscle compared to the adductor magnus muscle, whereas females showed greater activity in the rectus femoris muscle. A correlation between lower limb muscle activity and knee-joint valgus angle was found in male subjects but not in female subjects, suggesting that factors other than muscle activity are necessary for controlling knee joint valgus in females. Therefore, factors other than muscle activity should be investigated in the future to prevent female anterior cruciate ligament injuries.


  1. Arms S. W., Pope M. H., Johnson R. J., Fischer R. A., Arvidsson I., & Eriksson E. (1984). The biomechanics of anterior cruciate ligament rehabilitation and reconstruction. Am J Sports Med, 12(1), 8-18. doi: 10.1177/036354658401200102.

  2. Bisciotti G. N., Chamari K., Cena E., Bisciotti A., Corsini A., & Volpi P. (2019). Anterior cruciate ligament injury risk factors in football. J Sports Med Phys Fitness, 59(10), 1724-1738. doi: 10.23736/S0022-4707.19.09563-X.

  3. Boey D., & Jc Lee M. (2020). The relationship between Y-balance test scores and knee moments during single-leg jump-landing in netball. Int J Sports Phys Ther, 15(5), 722-731. doi: 10.26603/ijspt20200722.

  4. Collings T. J., Diamond L. E., Barrett R. S., Timmins R. G., Hickey J. T., du Moulin W. S., Williams M. D., Beerworth K. A., & Bourne M. N. (2022). Strength and biomechanical risk factors for non-contact ACL injury in elite female footballers: a prospective study. Med Sci Sports Exerc, online ahead of print. doi: 10.1249/MSS.0000000000002908.

  5. Draganich L. F., & Vahey J. W. (1990). An in vitro study of anterior cruciate ligament strain induced by quadriceps and hamstrings forces. J Orthop Res, 8(1), 57-63. doi: 10.1002/jor.1100080107.

  6. Ekegren C. L., Miller W. C., Celebrini R. G., Eng J. J., & Macintyre D. L. (2009). Reliability and validity of observational risk screening in evaluating dynamic knee valgus. J Orthop Sports Phys Ther, 39(9), 665-674. doi: 10.2519/jospt.2009.3004.

  7. Hewett T. E., Lindenfeld T. N., Riccobene J. V., & Noyes F. R. (1999). The effect of neuromuscular training on the incidence of knee injury in female athletes. A prospective study. Am J Sports Med, 27(6), 699-706. doi: 10.1177/03635465990270060301.

  8. Hewett T. E., Myer G. D., Ford K. R., Heidt R. S. Jr., Colosimo A. J., McLean S. G., van den Bogert A. J., Paterno M. V., & Succop P. (2005). Biomechanical measures of neuromuscular control and valgus loading of the knee predict anterior cruciate ligament injury risk in female athletes: a prospective study. Am J Sports Med, 33(4), 492-501. doi: 10.1177/0363546504269591.

  9. Hewett T. E., Torg J. S., & Boden B. P. (2009). Video analysis of trunk and knee motion during non-contact anterior cruciate ligament injury in female athletes: lateral trunk and knee abduction motion are combined components of the injury mechanism. Br J Sports Med, 43(6), 417-422. doi: 10.1136/bjsm.2009.059162.

  10. Hewett T. E., Di Stasi S. L., & Myer G. D. (2013). Current concepts for injury prevention in athletes after anterior cruciate ligament reconstruction. Am J Sports Med, 41(1), 216-224. doi: 10.1177/0363546512459638.

  11. Kernozek T. W., Torry M. R., VAN Hoof H., Cowley H., & Tanner S. (2005). Gender differences in frontal and sagittal plane biomechanics during drop landings. Med Sci Sports Exerc, 37(6), 1003-1012.

  12. Larwa J., Stoy C., Chafetz R. S., Boniello M., & Franklin C. (2021). Stiff Landings, Core Stability, and Dynamic Knee Valgus: A Systematic Review on Documented Anterior Cruciate Ligament Ruptures in Male and Female Athletes. Int J Environ Res Public Health, 18(7), 3826. doi: 10.3390/ijerph18073826.

  13. Montalvo, A. M., Schneider D. K., Webster K. E., Yut L., Galloway M. T., Heidt R. S. Jr., Kaeding C. C., Kremcheck T. E., Magnussen R. A., Parikh S. N., Stanfield D. T., Wall E. J., & Myer G. D. (2019). Anterior Cruciate Ligament Injury Risk in Sport: A Systematic Review and Meta-Analysis of Injury Incidence by Sex and Sport Classification. J Athl Train, 54(5), 472-482. doi: 10.4085/1062-6050-407-16.

  14. Myer G. D., Ford K. R., & Hewett T. E. (2005). The effects of gender on quadriceps muscle activation strategies during a maneuver that mimics a high ACL injury risk position. J Electromyogr Kinesiol, 15(2), 181-189. doi: 10.1016/j.jelekin.2004.08.006.

  15. Myer G. D., Ford K. R., Barber Foss K. D., Liu C., Nick T. G., & Hewett T. E. (2009). The relationship of hamstrings and quadriceps strength to anterior cruciate ligament injury in female athletes. Clin J Sport Med, 19(1), 3-8. doi: 10.1097/JSM.0b013e318190bddb.

  16. Nilstad A., Andersen T. E., Kristianslund E., Bahr R., Myklebust G., Steffen K., & Krosshaug T. (2014). Physiotherapists can identify female football players with high knee valgus angles during vertical drop jumps using real-time observational screening. J Orthop Sports Phys Ther, 44(5), 358-365. doi: 10.2519/jospt.2014.4969.

  17. Nilstad A., Krosshaug T., Mok K. M., Bahr R., & Andersen T. E. (2015). Association between anatomical characteristics, knee laxity, muscle strength, and peak knee valgus during vertical drop-jump landings. J Orthop Sports Phys Ther, 45(12), 998-1005. doi: 10.2519/jospt.2015.5612.

  18. Olsen O. E., Myklebust G., Engebretsen L., & Bahr R. (2004). Injury mechanisms for anterior cruciate ligament injuries in team handball: a systematic video analysis. Am J Sports Med, 32(4), 1002-1012. doi: 10.1177/0363546503261724.

  19. Padua D. A., Bell D. R., & Clark M. A. (2012). Neuromuscular characteristics of individuals displaying excessive medial knee displacement. J Athl Train, 47(5), 525-536. doi: 10.4085/1062-6050-47.5.10.

  20. Russell K. A., Palmieri R. M., Zinder S. M., & Ingersoll C. D. (2006). Sex differences in valgus knee angle during a single-leg drop jump. J Athl Train, 41(2), 166-171.

  21. Shultz S. J., Nguyen A. D., Windley T. C., Kulas A. S., Botic T. L., & Beynnon B. D. (2006). Intratester and intertester reliability of clinical measures of lower extremity anatomic characteristics: implications for multicenter studies. Clin J Sport Med, 16(2), 155-161. doi: 10.1097/00042752-200603000-00012.

  22. Ugalde V., Brockman C., Bailowitz Z., & Pollard C. D. (2014). Single leg squat test and its relationship to dynamic knee valgus and injury risk screening. PM R, 7(3), 229-235. doi: 10.1016/j.pmrj.2014.08.361.

  23. Wilczyński B., Zorena K., & Ślęzak D. (2020). Dynamic knee valgus in single-leg movement tasks. Potentially modifiable factors and exercise training options. A literature review. Int J Environ Res Public Health, 17(21), 8208. doi: 10.3390/ijerph17218208.

  24. Withrow T. J., Huston L. J., Wojtys E. M., & Ashton-Miller J. A. (2006). The relationship between quadriceps muscle force, knee flexion, and anterior cruciate ligament strain in an in vitro simulated jump landing. Am J Sports Med, 34(2), 269-274. doi: 10.1177/0363546505280906.

  25. Yu B., & Garrett W. E. (2007). Mechanisms of non-contact ACL injuries. Br J Sports Med, 41 (Suppl 1), i47-51. doi: 10.1136/bjsm.2007.037192.

  26. Zazulak B. T., Hewett T. E., Reeves N. P., Goldberg B., & Cholewicki J. (2007). Deficits in neuromuscular control of the trunk predict knee injury risk: a prospective biomechanical-epidemiologic study. Am J Sports Med, 35(7), 1123-30. doi: 10.1177/0363546507301585

bottom of page