Assessment of Genetic Configuration Rapeseed (Brassica napus L.) Cultivars
top of page
Asian Institute of Research, Journal Publication, Journal Academics, Education Journal, Asian Institute
Asian Institute of Research, Journal Publication, Journal Academics, Education Journal, Asian Institute

Engineering and Technology Quarterly Reviews

ISSN 2622-9374

Screen Shot 2018-08-15 at 7.28.21 PM.png
Screen Shot 2018-08-15 at 7.28.06 PM.png
Screen Shot 2018-08-15 at 7.28.12 PM.png
Screen Shot 2018-08-15 at 7.28.27 PM.png
crossref
doi
open access

Published: 20 April 2023

Assessment of Genetic Configuration Rapeseed (Brassica napus L.) Cultivars

Mohammad Din Rostazada, Zainullah Hazim, Jaffar Shirzad, Mohammad Amin Sharifi

Bamyan University

journal of social and political sciences
pdf download

Download Full-Text Pdf

doi

10.5281/zenodo.7845045

Pages: 34-41

Keywords: Brassica napus L. Cultivar, Haplotype Block, SNP Marker, Pedigree. Genetic Structure

Abstract

Empathetic the inherited configuration of rapeseed cultivars is a precondition to consider phylogenetic pedigree, population structure, haplotype block in the target population. In this investigation, from different regions we have 85 rapeseeds (Brassica napus L.) cultivars. DNA was extracted by using CTAB method. Phylogenetic pedigree, haplotype block and SNP hotspots, Population structure is analyzed by using the 5058 Single Nucleotide Polymorphisms SNP markers to this research 85 rapeseed cultivars were considered. Phylogenetic was analyzed by using Power Marker software and MEGA software, HaploView was using to analysis the haplotype block, population structures were analyzed by using population structure software 2.3.4 manual user as K increasing sidewise from 1 into 10, recording ΔK valency shown at K=2 hence, 85 rapeseed cultivar were divided into two subcategories, P1subgroups including 13 cultivars and P2 subcategory including 72 cultivars, SNP hotspots determined by using map chart software. In this research, the haplotype block analysis presented that the SNP markers number in A sub genome is more than the C sub genome, the block numbers on chromosomes A06 and C03 are greater than the other chromosomes and the lowest block number is on chromosome C09. The hotspots of SNP were defined by SNP position, mutation frequency, and the number of SNPs per 100Kbp on the chromosome. The phylogenetic pedigree was constructed, neighbor-joining was built based on genetic similarity and kinship. In this study, 85 rapeseeds are branched into 12 major groups.

References

  1. Ahmad, R., Quiros, C. F., Rahman, H., & Swati, Z. A. (2014). Genetic diversity analyses of Brassica napus accessions using SRAP molecular markers. Plant Genetic Resources, 12(1), 14-21.

  2. Aranzana, M., Carbó, J., & Arús, P. (2003). Microsatellite variability in peach [Prunus persica (L.) Batsch]: cultivar identification, marker mutation, pedigree inferences and population structure. Theoretical and Applied Genetics, 106, 1341-1352.

  3. Aranzana, M., Carbó, J., & Arús, P. (2003). Microsatellite variability in peach [Prunus persica (L.) Batsch]: cultivar identification, marker mutation, pedigree inferences and population structure. Theoretical and Applied Genetics, 106, 1341-1352.

  4. Barrett, J. C., Fry, B., Maller, J. D. M. J., & Daly, M. J. (2005). Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics, 21(2), 263-265.

  5. Bus, A., Körber, N., Parkin, I. A., Samans, B., Snowdon, R. J., Li, J., & Stich, B. (2014). Species-and genome-wide dissection of the shoot ionome in Brassica napus and its relationship to seedling development. Frontiers in plant science, 5, 485.

  6. Chen, B., Xu, K., Li, J., Li, F., Qiao, J., Li, H., ... & Wu, X. (2014). Evaluation of yield and agronomic traits and their genetic variation in 488 global collections of Brassica napus L. Genetic resources and crop evolution, 61, 979-999.

  7. Clayton, A. L., Jackson, D. G., Weiss, R. B., and Dale, C. (2016). Adaptation by diabetogenic replication slippage in a nascent symbiont. Mol. Biol. Evol. 33, 1957–1966. doi: 10.1093/ mol-bev/msw071

  8. Delourme, R., Falentin, C., Fomeju, B. F., Boillot, M., Lassalle, G., André, I., ... & Pauquet, J. (2013). High-density SNP-based genetic map development and linkage disequilibrium assessment in Brassica napus L. BMC genomics, 14, 1-18.

  9. Guryev, V., Smits, B. M. G., de Belt, J. V., Verheul, M., Hubner, N., & Cuppen, E. (2006). Haplotype block structure is conserved across mammals. PLoS genetics, 2(7), e121.

  10. Hayward, A. C., Tollenaere, R., Dalton-Morgan, J., & Batley, J. (2015). Molecular marker applications in plants. Plant genotyping: Methods and protocols, 13-27.

  11. Körber, N., Bus, A., Li, J., Higgins, J., Bancroft, I., Higgins, E. E., ... & Stich, B. (2015). Seedling development traits in Brassica napus examined by gene expression analysis and association mapping. BMC plant biology, 15(1), 1-21.

  12. Li, H., Zhang, L., Hu, J., Zhang, F., Chen, B., Xu, K., ... & Wu, X. (2017). Genome-wide association mapping reveals the genetic control underlying branch angle in rapeseed (Brassica napus L.). Frontiers in plant science, 8, 1054.

  13. Li, N., Shi, J., Wang, X., Liu, G., & Wang, H. (2014). A combined linkage and regional association mapping validation and fine mapping of two major pleiotropic QTLs for seed weight and silique length in rapeseed (Brassica napus L.). BMC plant biology, 14(1), 1-14.

  14. Pritchard, J. K., Stephens, M., & Donnelly, P. (2000). Inference of population structure using multilocus genotype data. Genetics, 155(2), 945-959.

  15. Pritchard, J. K., Stephens, M., & Donnelly, P. (2000). Inference of population structure using multilocus genotype data. Genetics, 155(2), 945-959.

  16. Qian, L., Qian, W., & Snowdon, R. J. (2014). Sub-genomic selection patterns as a signature of breeding in the allopolyploid Brassica napus genome. BMC genomics, 15(1), 1-17.

  17. Sarlikioti, V., de Visser, P. H., Buck-Sorlin, G. H., & Marcelis, L. F. M. (2011). How plant architecture affects light absorption and photosynthesis in tomato: towards an ideotype for plant architecture using a functional–structural plant model. Annals of Botany, 108(6), 1065-1073.

  18. Shi, A., Qin, J., Mou, B., Correll, J., Weng, Y., Brenner, D., ... & Ravelombola, W. (2017). Genetic diversity and population structure analysis of spinach by single-nucleotide polymorphisms identified through genotyping-by-sequencing. PloS one, 12(11), e0188745.

  19. Testolin, R., Marrazzo, T., Cipriani, G., Quarta, R., Verde, I., Dettori, M. T., ... & Sansavini, S. (2000). Microsatellite DNA in peach (Prunus persica L. Batsch) and its use in fingerprinting and testing the genetic origin of cultivars. Genome, 43(3), 512-520.

  20. Wu, J., Li, F., Xu, K., Gao, G., Chen, B., Yan, G., ... & Wu, X. (2014). Assessing and broadening genetic diversity of a rapeseed germplasm collection. Breeding science, 64(4), 321-330.

  21. Xiao, Y., Cai, D., Yang, W., Ye, W., Younas, M., Wu, J., & Liu, K. (2012). Genetic structure and linkage disequilibrium pattern of a rapeseed (Brassica napus L.) association mapping panel revealed by microsatellites. Theoretical and Applied Genetics, 125, 437-447.

  22. Yan, J., Shah, T., Warburton, M. L., Buckler, E. S., McMullen, M. D., & Crouch, J. (2009). Genetic characterization and linkage disequilibrium estimation of a global maize collection using SNP markers. PloS one, 4(12), e8451.

  23. Yan, J., Shah, T., Warburton, M. L., Buckler, E. S., McMullen, M. D., & Crouch, J. (2009). Genetic characterization and linkage disequilibrium estimation of a global maize collection using SNP markers. PloS one, 4(12), e8451.

  24. Zhang, Y., Wang, L., Xin, H., Li, D., Ma, C., Ding, X., ... & Zhang, X. (2013). Construction of a high-density genetic map for sesame based on large scale marker development by specific length amplified fragment (SLAF) sequencing. BMC plant biology, 13, 1-12.

  25. Zhao, G. J., Yang, Z. Q., Chen, X. P., & Guo, Y. H. (2011). Genetic relationships among loquat cultivars and some wild species of the genus Eriobotrya based on the internal transcribed spacer (ITS) sequences. Scientia horticulturae, 130(4), 913-918.

  26. Zhou, Q., Zhou, C., Zheng, W., Mason, A. S., Fan, S., Wu, C., ... & Huang, Y. (2017). Genome-wide SNP markers based on SLAF-seq uncover breeding traces in rapeseed (Brassica napus L.). Frontiers in Plant Science, 8, 648.

  27. Zondervan, K. T., & Cardon, L. R. (2004). The complex interplay among factors that influence allelic association. Nature Reviews Genetics, 5(2), 89-100.

bottom of page