Synthesis of Chalcones from Acetone and tetrazole and 2-acetyl naphthalene Assisted by Microwave
top of page
Asian Institute of Research, Journal Publication, Journal Academics, Education Journal, Asian Institute
Asian Institute of Research, Journal Publication, Journal Academics, Education Journal, Asian Institute

Engineering and Technology Quarterly Reviews

ISSN 2622-9374

Screen Shot 2018-08-15 at 7.28.21 PM.png
Screen Shot 2018-08-15 at 7.28.06 PM.png
Screen Shot 2018-08-15 at 7.28.12 PM.png
Screen Shot 2018-08-15 at 7.28.27 PM.png
crossref
doi
open access

Published: 26 February 2020

Synthesis of Chalcones from Acetone and tetrazole and 2-acetyl naphthalene Assisted by Microwave

Bonyad Ali Moin

Bamyan University, Afghanistan

journal of social and political sciences
pdf download

Download Full-Text Pdf

doi

10.5281/zenodo.3686827

Pages: 16-22

Keywords: Tetrazolo, Quinoline, Acetone, Condensation, Microwave Irradiation And Chalcone

Abstract

In the present study, we understood the total synthesis one chalcone derivative via Claisen-Schmidt condensation of the respective aldehydes and ketones using Microwave assisted irradiation method. In the microwave environment, chemical reactions usually proceed faster and give higher yields with fewer by- products. In the synthesis, a common aldehyde namely tetrazolo {1, 5-a} quinoline-4-carbaldehyde was used while the ketones used were respectively acetone, 2- acetyl Naphthalene. The Chalcone synthesised from Tetrazolo {1, 5-a} quinolone-4-carbaldehyde and acetone was 4-(tetrazolo {1, 5-a} quinoline-4-yl) but -3-en-2-one. The Chalcone synthesised from Tetrazolo {1, 5-a} quinoline-4-carbaldehyde and 2-acetyl Naphthalene was 2E-1-(naphthalene-2-yl)-3-(tetrazolo {1, 5-a} quinolone-4-yl) prop-2-en-1- one. The starting aldehyde was Tetrazolo {1, 5-a} quinoline-4-carbaldehyde necessary for the Claisen-Schmidt condensation was in turn synthesized from Acetanilide which and Vilsmeier reagent (DMF and PoCl3) to produce the intermediate compound 2-chloroquinoline-3-carbaldehyde. This intermediate 2-chloroquinoline-3-carbaldehyde was then treated with sodium azide and acetic acid with ethanol as solvent to produce Tetrazolo {1, 5-a} quinoline-4-carbaldehyde. Structure of the compound were confirmed by spectral data such as IR and 1H-NMR.

References

  1. Affan, M. A., Siong W, F., Jusoh, I., Hanapi, S., Edward R.T. Teikink. (2009). Synthesis, Characterization and biological studies of organotin (5) complexes with hydraone ligand. Inorganica Chimica Acta. 362: 5031 -5037.
  2. Avila, H.P., Albino Smania, E. D. F., Monache, F. D., Smania Junior, A. (2008). Structure-activity relationship of antibacterial chalcones. Bioorganic & Medicinal Chemistry. 16: 9790-9794.
  3. Bennet, M., Burke. A. J., Ivo O’Sullivan, I, W. (1996). Aspects of the Algar- Flynn- Oyamada (AFO) Reaction. Tetrahedron. Vol. 52: 7163-7178.
  4. Black, W. B and Lutz, R. E. (1954). Ultraviolet Absorption Spectra of Chalcones. Identification of Chromophorses. 77: 5134-5140.
  5. Bohm, A. B. (998). Introduction to Flavonoids, Harwood Academic Pub, London, pg. 243-284.
  6. Chaudhuri, M. K., Khan, A. T., and Patel, B. K. (1998). An Environmentally benign synthesis of organic ammonium tribromides (OATB) and bromination of selected organic substrate by tetrabutylammonium tribromide (TBATB). Tet letts., 39: 8163-8166.
  7. Climet, M. J., Corma, A., Iborra, S., Velty, A. (2004). Activated hydrotalcites as catalyst for the synthesis of Chalcones of Pharmaceutical interest. J Catal. 221: 474-482.
  8. Dhar, D. N. and Jal, J.B. (1958). Chalcones: condensation of aromatic aldehydes with resacetophenone 2. Chalcone 2: 1159-1161.
  9. Edrari, S., Cotelle, N., Bakkaour, Y., Ronaldo, C. (2003). An efficient synthesis of Chalcones Based on the Suzuki Reaction. Tet. Letts. 44: 5359-5363.
  10. Fresneda P. M., Molina P., and Sanz M.A., Synlett, 2, 2001, 218.
  11. Fukie, K., Matsumoto, T., Nakamura, S., and Nakayama, M. (1968). Synthesis studies of the flavone derivativs. 7. The synthesis of Jaceidin. Bulletin of the Chemical Society of Japan.
  12. Ganguly, A., Mahat, P. K., Biswas, D., pramanik, B. N., Chan T. M. (2005). Synthesis and Propeties of 3-Acetyl-γ-pyrones, A Novel Class of Flavones and Chromones. Tet. Letts. 46: 4119-4121.
  13. Hampford Research Inc. (2009). Technical data sheet, dibromochalcone. {Brochure}. Stratford, CT.
  14. Jamil, S., Mohd Sirat, H., Jantan, I., Aimi, N., Kitajima, M. (2008). A new prenylated dihydrochalcone from the leaves of Artocarpus lowii, Journal of Natural medicine. 62: 321-324.
  15. Khajavi M. S., Moghadam K.R., and Hazarkhani H., synth. Commun. 29. 1999, 2617.
  16. Marins M.A.P., Beck P., Cunico W., Pereira C.M.P Sinhorin A.P., Blanco R.F., Peres R., Boncorso H.G., and Zanatta N., Tet. Lett. 43. 2002, 7005.
  17. Nakanishi, K. (1975). Natural Products Chemistry. 2. Tokyo: Kodansha Ltd. 225- 228.
  18. Petrov, O., Ivanova, Y., Gerova, M. (2008). SOCl2/EtOH: Catalytic system for synthesis of Chalcones. Catalysis Communication. 9: 3150316.
  19. Rajendra, V.R. (1999). Solvent-free organic synthesis using supported reagents and microwave irradiation. Green Chemistry. Pg.: 43-55.
  20. Srivastava, Y.K. Eco-friendly Microwave Assisted Synthesis of Some Chalcones. Rasayan J. chem. 1: 884-886.
  21. Zhou J.F., Hua Xue Yan Jiu Yu Ying Yong, 13, 2001,712.
bottom of page