Alternative Antibiotics Therapy for Drug-resistant Gonorrhea: A Literature Review
top of page
Asian Institute of Research, Journal Publication, Journal Academics, Education Journal, Asian Institute
Asian Institute of Research, Journal Publication, Journal Academics, Education Journal, Asian Institute

Journal of Health and Medical Sciences

ISSN 2622-7258

Screen Shot 2018-08-12 at 1.24.09 AM.png
Screen Shot 2018-08-12 at 1.24.02 AM.png
Screen Shot 2018-08-12 at 1.23.57 AM.png
Screen Shot 2018-08-12 at 1.23.52 AM.png
crossref
doi
open access

Published: 22 August 2023

Alternative Antibiotics Therapy for Drug-resistant Gonorrhea: A Literature Review

Dian Andriani Ratna Dewi, Nabila Arkania, Ni Made Wiliantari, Farrasila Nadhira, Clara Virginia Allun, Arohid Allatib, Cut Annisa Salsabila, Kelvin Dewantara, Angki Perdiyana

The Republic of Indonesia Defense University, Central General Hospital Dr. Sardjito Yogyakarta, Ratna Dewi Principal Clinic

journal of social and political sciences
pdf download

Download Full-Text Pdf

doi

10.31014/aior.1994.06.03.275

Pages: 32-51

Keywords: Gonorrhoea, Resistance Antibiotic, Alternative Antibiotics

Abstract

Background: The management and control of gonorrhea are hampered by the widespread resistance to the diverse strains of Neisseria gonorrhea. Resistance to sulfonamides, penicillins, tetracyclines, macrolides, fluoroquinolones, and early cephalosporins has emerged rapidly. Purpose: This systematic review aimed to assess what antibiotics can be used as an alternative therapy for gonorrhea infections that are resistant to antibiotics. Methods: The study was conducted using the Web of Science, PubMed, Embase, and CENTRAL databases, following the Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) statement guidelines. Risk of Bias for Randomized Trials (RoB2) was utilized to evaluate study quality. Results: This review included 28 articles from randomized controlled trials between 2013 and 2023, distributed across five nations. The studies included 2.380 patients and clinical isolates from men and women diagnosed with gonorrhea infection at various sites. Sample testing by treatment with alternative antibiotics. Discussion: Zoliflodacin, tigecycline, and ertapenem in single or dual therapy with ceftriaxone could be considered as a potential option in treating gonorrhea resistant to antibiotics. Gentamicin cannot be recommended to replace ceftriaxone as first-line therapy. Gepotidacin is effective for the Gyr A A92T mutation in gonorrhea infection. Summary: The effectiveness of these antibiotics, zoliflodacin, ceftriaxone, gentamicin, gepotidacin, solithromycin, tigecycline, and ertapenem is considered a solution to gonorrhea resistance. Researchers should study how to provide antibiotics with intervening multidrug efflux pumps to overcome gonococcal antimicrobial resistance.

References

  1. Bereda, G. (2022). Clinical Pharmacology of Ceftriaxone in Paediatrics. Journal of Biomedical and Biological Sciences, 2(1), 1–8.

  2. Bradford, P. A., Miller, A. A., O’Donnell, J., & Mueller, J. P. (2020). Zoliflodacin: An Oral Spiropyrimidinetrione Antibiotic for the Treatment of Neisseria gonorrheae, including Multi-Drug-Resistant Isolates. ACS Infectious Diseases, 6(6), 1332–1345. https://doi.org/10.1021/acsinfecdis.0c00021

  3. Campbell, D. J., & Ed, F. R. C. P. (1944). GONORRHOEA IN NORTH AFRICA AND THE. Br Med J, 2(Jul 8), 44. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2285755/

  4. Chen, M. Y., McNulty, A., Avery, A., Whiley, D., Tabrizi, S. N., Hardy, D., Das, A. F., Nenninger, A., Fairley, C. K., Hocking, J. S., Bradshaw, C. S., Donovan, B., Howden, B. P., & Oldach, D. (2019). Solithromycin versus ceftriaxone plus azithromycin for the treatment of uncomplicated genital gonorrhoea (SOLITAIRE-U): a randomised phase 3 non-inferiority trial. The Lancet Infectious Diseases, 19(8), 833–842. https://doi.org/10.1016/S1473-3099(19)30116-1

  5. Coates, A. R. M., Hu, Y., Holt, J., & Yeh, P. (2020). Antibiotic combination therapy against resistant bacterial infections: synergy, rejuvenation and resistance reduction. Expert Review of Anti-Infective Therapy, 18(1), 5–15. https://doi.org/10.1080/14787210.2020.1705155

  6. Costa-Lourenço, A. P. R. da, Barros dos Santos, K. T., Moreira, B. M., Fracalanzza, S. E. L., & Bonelli, R. R. (2017). Antimicrobial resistance in Neisseria gonorrhoeae: history, molecular mechanisms and epidemiological aspects of an emerging global threat. Brazilian Journal of Microbiology, 48(4), 617–628. https://doi.org/10.1016/j.bjm.2017.06.001

  7. Darby, E. M., Trampari, E., Siasat, P., Gaya, M. S., Alav, I., Webber, M. A., & Blair, J. M. A. (2023). Molecular mechanisms of antibiotic resistance revisited. Nature Reviews Microbiology, 21(5), 280–295. https://doi.org/10.1038/s41579-022-00820-y

  8. Doi, Y., Wachino, J., & Arakawa, Y. (2017). HHS Public Access Author manuscript Infect Dis Clin North Am. Author manuscript; available in PMC 2017 June 01. Published in final edited form as: Infect Dis Clin North Am. 2016 June ; 30(2): 523–537. doi:10.1016/j.idc.2016.02.011. Aminoglycoside Resistan. Physiology & Behavior, 176(10), 139–148. https://doi.org/10.1016/j.idc.2016.02.011.Aminoglycoside

  9. Fenton, B. A., Tomberg, J., Sciandra, C. A., Nicholas, R. A., Davies, C., & Zhou, P. (2021). Mutations in PBP2 from ceftriaxone-resistant Neisseria gonorrhoeae alter the dynamics of the β3–β4 loop to favor a low-affinity drug-binding state. Journal of Biological Chemistry, 279(4), 101188. https://doi.org/10.1016/j.jbc.2021.101188

  10. Giedraitienė, A., Giedraitienė, A., Vitkauskienė, A., Naginienė, R., & Pavilonis, A. (2011). Correspondence to Antibiotic Resistance Mechanisms of Clinically Important Bacteria. REVIEW Medicina (Kaunas), 47(3), 137–183.

  11. Golparian, D., Shafer, W. M., Ohnishi, M., & Unemo, M. (2014). Importance of multidrug efflux pumps in the antimicrobial resistance property of clinical multidrug-resistant isolates of neisseria gonorrhoeae. Antimicrobial Agents and Chemotherapy, 58(6), 3556–3559. https://doi.org/10.1128/AAC.00038-14

  12. Habiburrahman, M., Soetikno, V., Sirait, W. R., & Savira, M. (2020). Solithromycin as a potential novel antibiotic against Neisseria gonorrhoeae resistance. Indonesian Journal of Pharmacy, 31(4), 335–353. https://doi.org/10.22146/ijp.1123

  13. Hathorn, E., Dhasmana, D., Duley, L., & Ross, J. D. C. (2014). The effectiveness of gentamicin in the treatment of Neisseria gonorrhoeae: A systematic review. Systematic Reviews, 3(1), 1–9. https://doi.org/10.1186/2046-4053-3-104

  14. Holley, C. L., Dhulipala, V., Balthazar, J. T., Van, A. Le, Begum, A. A., Chen, S. C., Read, T. D., Matoga, M., Hoffman, I. F., Golparian, D., Unemo, M., Jerse, A. E., & Shafer, W. M. (2022). A Single Amino Acid Substitution in Elongation Factor G Can Confer Low-Level Gentamicin Resistance in Neisseria gonorrhoeae. Antimicrobial Agents and Chemotherapy, 66(5), 1–11. https://doi.org/10.1128/aac.00251-22

  15. Hooper, D. C., & Jacoby, G. A. (2016). Mechanisms of Action and Resistance. 1–21.

  16. Lambert, P. A. (2005). Bacterial resistance to antibiotics: modified target sites. Advanced Drug Delivery Reviews, 57(10), 1471–1485. https://doi.org/10.1016/j.addr.2005.04.003

  17. Lawrence, A., Phillips, I., & Nicol, C. (1973). Various regimens of trimethoprim-sulfamethoxazole used in the treatment of gonorrhea. Journal of Infectious Diseases, 128(November), S673–S678. https://doi.org/10.1093/infdis/128.Supplement_3.S673

  18. Liu, J. W., Xu, W. Q., Zhu, X. Y., Dai, X. Q., Chen, S. C., Han, Y., Liu, J., Chen, X. S., & Yin, Y. P. (2019). Gentamicin susceptibility of neisseria gonorrhoeae isolates from 7 provinces in China. Infection and Drug Resistance, 12, 2471–2476. https://doi.org/10.2147/IDR.S214059

  19. Lobanovska, M., & Pilla, G. (2017). Penicillin’s discovery and antibiotic resistance: Lessons for the future? Yale Journal of Biology and Medicine, 90(1), 135–145.

  20. Masi, M., & Pagès, J.-M. (2013). Structure, Function and Regulation of Outer Membrane Proteins Involved in Drug Transport in Enterobactericeae: the OmpF/C – TolC Case. The Open Microbiology Journal, 7(1), 22–33. https://doi.org/10.2174/1874285801307010022

  21. Mlynarczyk-Bonikowska, B., Kowalewski, C., Krolak-Ulinska, A., & Marusza, W. (2022). Molecular Mechanisms of Drug Resistance and Epidemiology of Multidrug-Resistant Variants of Neisseria gonorrhoeae. International Journal of Molecular Sciences, 23(18). https://doi.org/10.3390/ijms231810499

  22. National Center for Biotechnology Information (2023). (2022). PubChem Compound Summary for CID 150610.

  23. Ross, J. D. C., Brittain, C., Cole, M., Dewsnap, C., Harding, J., Hepburn, T., Jackson, L., Keogh, M., Lawrence, T., Montgomery, A. A., Roberts, T. E., Sprange, K., Tan, W., Thandi, S., White, J., Wilson, J., & Duley, L. (2019). Gentamicin compared with ceftriaxone for the treatment of gonorrhoea (G-ToG): a randomised non-inferiority trial. The Lancet, 393(10190), 2511–2520. https://doi.org/10.1016/S0140-6736(18)32817-4

  24. Ross, J. D. C., Harding, J., Duley, L., Montgomery, A. A., Hepburn, T., Tan, W., Brittain, C., Meakin, G., Sprange, K., Thandi, S., Jackson, L., Roberts, T., Wilson, J., White, J., Dewsnap, C., Cole, M., & Lawrence, T. (2019). Gentamicin as an alternative to ceftriaxone in the treatment of gonorrhoea: The G-TOG non-inferiority RCT. Health Technology Assessment, 23(20), 1–103. https://doi.org/10.3310/hta23200

  25. Scangarella-Oman, N. E., Hossain, M., Dixon, P. B., Ingraham, K., Min, S., Tiffany, C. A., Perry, C. R., Raychaudhuri, A., Dumont, E. F., Huang, J., Hook, E. W., & Miller, L. A. (2018). Microbiological analysis from a phase 2 randomized study in adults evaluating single oral doses of gepotidacin in the treatment of uncomplicated urogenital gonorrhea caused by neisseria gonorrhoeae. Antimicrobial Agents and Chemotherapy, 62(12), 1–34. https://doi.org/10.1128/AAC.01221-18

  26. Shafran, S. D. (1990). The basis of antibiotic resistance in bacteria. Journal of Otolaryngology, 19(3), 158–168.

  27. Stratton, C. W. (2000). Mechanisms of bacterial resistance to antimicrobial agents. Journal Medical Libanais, 48(4), 186–198. https://doi.org/10.1128/microbiolspec.arba-0019-2017

  28. Tapsall, J. W., Ndowa, F., Lewis, D. A., & Unemo, M. (2009). Meeting the public health challenge of multidrug- and extensively drug-resistant Neisseria gonorrhoeae. Expert Review of Anti-Infective Therapy, 7(7), 821–834. https://doi.org/10.1586/ERI.09.63

  29. Taylor, S. N., Marrazzo, J., Batteiger, B. E., Hook, E. W., Seña, A. C., Long, J., Wierzbicki, M. R., Kwak, H., Johnson, S. M., Lawrence, K., & Mueller, J. (2018). Single-Dose Zoliflodacin (ETX0914) for Treatment of Urogenital Gonorrhea. New England Journal of Medicine, 379(19), 1835–1845. https://doi.org/10.1056/nejmoa1706988

  30. Tewabe, A., Marew, T., & Birhanu, G. (2021). The contribution of nano-based strategies in overcoming ceftriaxone resistance: a literature review. Pharmacological Research, 9(4). https://doi.org/https://doi.org/10.1002/prp2.849

  31. Uddin, T. M., Chakraborty, A. J., Khusro, A., Zidan, B. R. M., Mitra, S., Emran, T. Bin, Dhama, K., Ripon, M. K. H., Gajdács, M., Sahibzada, M. U. K., Hossain, M. J., & Koirala, N. (2021). Antibiotic resistance in microbes: History, mechanisms, therapeutic strategies and future prospects. Journal of Infection and Public Health, 14(12), 1750–1766. https://doi.org/10.1016/j.jiph.2021.10.020

  32. Unemo, M., & Shafer, W. M. (2014). Antimicrobial resistance in Neisseria gonorrhoeae in the 21st century: past, evolution, and future. Clinical Microbiology Reviewa, 27(3), 587–613. https://doi.org/10.1128/CMR.00010-14.

  33. Urban-Chmiel, R., Marek, A., Stępień-Pyśniak, D., Wieczorek, K., Dec, M., Nowaczek, A., & Osek, J. (2022). Antibiotic Resistance in Bacteria—A Review. Antibiotics, 11(8). https://doi.org/https://doi.org/10.3390/antibiotics11081079

  34. Varela, M. F., Stephen, J., Lekshmi, M., Ojha, M., Wenzel, N., Sanford, L. M., Hernandez, A. J., Parvathi, A., & Kumar, S. H. (2021). BacVarela, M. F. et al. (2021) ‘Bacterial Resistance to Antimicrobial Agents’.terial Resistance to Antimicrobial Agents. Antibiotics, 10, 593.

  35. WHO. (2016). Global action plan on antimicrobial resistance. World Health Organization.

  36. Xu, W., Zhou, Q., Liu, J., Zhang, Y., Zhu, X., Zhu, B., & Yin, Y. (2022). In Vitro Study of the Interaction of Gentamicin with Ceftriaxone and Azithromycin against Neisseria gonorrhoeae Using Agar Dilution Method. Antibiotics, 11(8). https://doi.org/10.3390/antibiotics11081083

  37. Yaghoubi, S., Zekiy, A. O., Krutova, M., Gholami, M., Kouhsari, E., Sholeh, M., & Ghafouri, Z. F. M. (2022). Tigecycline antibacterial activity, clinical effectiveness, and mechanisms and epidemiology of resistance: narrative review. European Journal of Clinical Microbiology, 41(7), 1003–1022. https://doi.org/10.1007/s10096-020-04121-1

  38. Yang, F., Yan, J., Zhang, J., & Veen, S. van der. (2020). Evaluation of alternative antibiotics for susceptibility of gonococcal isolates from China. International Journal of Antimicrobial Agents, 55(2). https://doi.org/10.1016/j.ijantimicag.2019.11.003.

  39. Zarantonelli, L., Borthagaray, G., Lee, E. H., & Shafer, W. M. (1999). Decreased azithromycin susceptibility of Neisseria gonorrhoeae due to mtrR mutations. Antimicrobial Agents and Chemotherapy, 43(10), 2468–2472. https://doi.org/10.1128/aac.43.10.2468

  40. Zhou, C.-C., Huang, F., Zhang, J.-M., & Zhuang, Y.-G. (2022). Population Pharmacokinetics of Tigecycline: A Systematic Review. Drug Design, Development, and Therapy, 17, 1885–1896. https://doi.org/10.2147/DDDT.S365512.

bottom of page