Effects of Different Sintering Times on The Adaptation of Monolithic Zirconia Crowns
top of page
Asian Institute of Research, Journal Publication, Journal Academics, Education Journal, Asian Institute
Asian Institute of Research, Journal Publication, Journal Academics, Education Journal, Asian Institute

Journal of Health and Medical Sciences

ISSN 2622-7258

Screen Shot 2018-08-12 at 1.24.09 AM.png
Screen Shot 2018-08-12 at 1.24.02 AM.png
Screen Shot 2018-08-12 at 1.23.57 AM.png
Screen Shot 2018-08-12 at 1.23.52 AM.png
crossref
doi
open access

Published: 01 October 2020

Effects of Different Sintering Times on The Adaptation of Monolithic Zirconia Crowns

Recep Kara

Istanbul Aydın University, Turkey

journal of social and political sciences
pdf download

Download Full-Text Pdf

doi

10.31014/aior.1994.03.04.139

Pages: 449-456

Keywords: Yttria Stabilized Tetragonal Zirconia, Marginal Gap, Biological Adaptation, Dental Crown, Time

Abstract

Changes to heat and time during the sintering process, which is one of the most critical stages in the production of monolithic zirconia crown restoration, can affect the physical properties of the material. The study was examined the effect of change in sintering time on the adaptation of monolithic zirconia crowns. Sixty monolithic crowns in upper first molar tooth form were produced from Y-TZP semi-sintered different blocks. Samples were divided into three groups according to brands and two subgroups according to sintering time (n=10). Marginal and internal gaps were photographed with a video microscope at x 180 magnification. The two-way ANOVA test was used for the effect of brand, and sintering time on adaptations were examined. There was no statistically significant difference in the overall gap values between the groups according to the long sintering times (p> 0.05). In crowns produced from zirCAD and Lava blocks, marginal gap values were not affected statistically significantly from sintering time (p>0.05). In crowns produced from katana blocks, shortening of sintering time caused a statistically significant increase in marginal and occlusal gap values (p<0.05). It can be said that the sintering time and temperature are an important factor in the biocompatibility of monolithic crowns.

References

  1. Anadioti, E., Aquilino, S. A., Gratton, D. G., Holloway, J. A., Denry, I. L., Thomas, G. W., & Qian, F. (2015). Internal fit of pressed and computer-aided design/computer-aided manufacturing ceramic crowns made from digital and conventional impressions. Journal of Prosthetic Dentistry, 113(4), 304–309. https://doi.org/10.1016/j.prosdent.2014.09.015

  2. Badran, N., Abdel Kader, S., & Alabbassy, F. (2019). Effect of incisal porcelain veneering thickness on the fracture resistance of CAD/CAM zirconia all-ceramic anterior crowns. International Journal of Dentistry, 2019. https://doi.org/10.1155/2019/6548519

  3. Batson, E. R., Cooper, L. F., Duqum, I., & Mendonça, G. (2014). Clinical outcomes of three different crown systems with CAD/CAM technology. Journal of Prosthetic Dentistry, 112(4), 770–777. https://doi.org/10.1016/j.prosdent.2014.05.002

  4. Beschnidt, S. M., & Strub, J. R. (1999). Evaluation of the marginal accuracy of different all-ceramic crown systems after simulation in the artificial mouth. Journal of Oral Rehabilitation, 26(7), 582–593. https://doi.org/10.1046/j.1365-2842.1999.00449.x

  5. Beuer, F., Schweiger, J., & Edelhoff, D. (2008). Digital dentistry: An overview of recent developments for CAD/CAM generated restorations. British Dental Journal, 204(9), 505–511. https://doi.org/10.1038/sj.bdj.2008.350

  6. Christensen, G. J. (1966). Marginal fit of gold inlay castings. The Journal of Prosthetic Dentistry, 16(2), 297–305. https://doi.org/10.1016/0022-3913(66)90082-5

  7. Contrepois, M., Soenen, A., Bartala, M., & Laviole, O. (2013). Marginal adaptation of ceramic crowns: A systematic review. Journal of Prosthetic Dentistry, 110(6), 447-454.e10. https://doi.org/10.1016/j.prosdent.2013.08.003

  8. Denry, I., & Kelly, J. R. (2008). State of the art of zirconia for dental applications. Dental Materials, 24(3). https://doi.org/10.1016/j.dental.2007.05.007

  9. Ebeid, K., Wille, S., Hamdy, A., Salah, T., El-Etreby, A., & Kern, M. (2014). Effect of changes in sintering parameters on monolithic translucent zirconia. Dental Materials, 30(12). https://doi.org/10.1016/j.dental.2014.09.003

  10. Ersoy, N. M., Aydoğdu, H. M., Değirmenci, B. Ü., Çökük, N., & Sevimay, M. (2015). The effects of sintering temperature and duration on the flexural strength and grain size of zirconia. Acta Biomaterialia Odontologica Scandinavica, 1(2–4). https://doi.org/10.3109/23337931.2015.1068126

  11. Felton, D. A., Kanoy, B. E., Bayne, S. C., & Wirthman, G. P. (1991). Effect of in vivo crown margin discrepancies on periodontal health. The Journal of Prosthetic Dentistry, 65(3). https://doi.org/10.1016/0022-3913(91)90225-L

  12. Griffin, J. D. (2013). Combining monolithic zirconia crowns, digital impressioning, and regenerative cement for a predictable restorative alternative to PFM. In Compendium of continuing education in dentistry (Jamesburg, N.J. : 1995) (Vol. 34, Issue 3).

  13. Ha, S. J., & Cho, J. H. (2016). Comparison of the fit accuracy of zirconiabased prostheses generated by two CAD/CAM systems. Journal of Advanced Prosthodontics, 8(6), 439–448. https://doi.org/10.4047/jap.2016.8.6.439

  14. Hjerppe, J., Vallittu, P. K., Fröberg, K., & Lassila, L. V. J. (2009). Effect of sintering time on biaxial strength of zirconium dioxide. Dental Materials, 25(2). https://doi.org/10.1016/j.dental.2008.05.011

  15. Karataşli, Ö., Kursoǧlu, P., Çapa, N., & Kazazoǧlu, E. (2011). Comparison of the marginal fit of different coping materials and designs produced by computer aided manufacturing systems. Dental Materials Journal, 30(1). https://doi.org/10.4012/dmj.2010-063

  16. Kelvin Khng, K. Y., Ettinger, R. L., Armstrong, S. R., Lindquist, T., Gratton, D. G., & Qian, F. (2016). In vitro evaluation of the marginal integrity of CAD/CAM interim crowns. Journal of Prosthetic Dentistry, 115(5). https://doi.org/10.1016/j.prosdent.2015.10.002

  17. Khaledi, A. A. R., Vojdani, M., Farzin, M., Pirouzi, S., & Orandi, S. (2019). The Effect of Sintering Time on the Marginal Fit of Zirconia Copings. Journal of Prosthodontics, 28(1). https://doi.org/10.1111/jopr.12731

  18. Kohorst, P., Brinkmann, H., Li, J., Borchers, L., & Marginal, S. M. (2009). Marginal accuracy of four-unit zirconia fixed dental prostheses fabricated using different computer- aided design/computer-aided manufacturing systems. European Journal of Oral Sciences, 2, 319–325.

  19. Laboratories G. Bruxzir Solid Zirconia. (n.d.). You just get more with Over 14 million restorations delivered through the. http://bruxzir.com/wp-content/uploads/2018/02/scientific-clinical-compendium-english.pdf

  20. Lankford, J., Page, R. A., & Rabenberg, L. (1988). Deformation mechanisms in yttria-stabilized zirconia. Journal of Materials Science, 23(11). https://doi.org/10.1007/BF01106850

  21. Lazar, D. R. R., Bottino, M. C., Özcan, M., Valandro, L. F., Amaral, R., Ussui, V., & Bressiani, A. H. A. (2008). Y-TZP ceramic processing from coprecipitated powders: A comparative study with three commercial dental ceramics. Dental Materials, 24(12). https://doi.org/10.1016/j.dental.2008.04.002

  22. Lee, K. H., Yeo, I. S., Wu, B. M., Yang, J. H., Han, J. S., Kim, S. H., Yi, Y. J., & Kwon, T. K. (2015). Effects of Computer-Aided Manufacturing Technology on Precision of Clinical Metal-Free Restorations. BioMed Research International, 2015. https://doi.org/10.1155/2015/619027

  23. Marchack, B. W., Sato, S., Marchack, C. B., & White, S. N. (2011). Complete and partial contour zirconia designs for crowns and fixed dental prostheses: A clinical report. Journal of Prosthetic Dentistry, 106(3). https://doi.org/10.1016/S0022-3913(11)60112-1

  24. McLean, J. W., & von, F. (1971). The estimation of cement film thickness by an in vivo technique. British Dental Journal, 131(3), 107–111. https://doi.org/10.1038/sj.bdj.4802708

  25. Pereira, G. K. R., Venturini, A. B., Silvestri, T., Dapieve, K. S., Montagner, A. F., Soares, F. Z. M., & Valandro, L. F. (2016). Low-temperature degradation of Y-TZP ceramics: A systematic review and meta-analysis. In Journal of the Mechanical Behavior of Biomedical Materials (Vol. 55). https://doi.org/10.1016/j.jmbbm.2015.10.017

  26. Piconi, C., & Maccauro, G. (1999). Zirconia as a ceramic biomaterial. In Biomaterials (Vol. 20, Issue 1). https://doi.org/10.1016/S0142-9612(98)00010-6

  27. Stawarczyk, B., Özcan, M., Hallmann, L., Ender, A., Mehl, A., & Hämmerlet, C. H. F. (2013). The effect of zirconia sintering temperature on flexural strength, grain size, and contrast ratio. Clinical Oral Investigations, 17(1). https://doi.org/10.1007/s00784-012-0692-6

  28. Suttor, D., Bunke, K., Hoescheler, S., Hauptmann, H., & Hertlein, G. (2001). LAVA--the system for all-ceramic ZrO2 crown and bridge frameworks. International Journal of Computerized Dentistry, 4(3).

  29. Tsirogiannis, P., Reissmann, D. R., & Heydecke, G. (2016). Evaluation of the marginal fit of single-unit, complete-coverage ceramic restorations fabricated after digital and conventional impressions: A systematic review and meta-analysis. Journal of Prosthetic Dentistry, 116(3), 328-335.e2. https://doi.org/10.1016/j.prosdent.2016.01.028

  30. Vafaee, F., Firouz, F., Khoshhal, M., Hooshyarfard, A., Shahbazi, A., & Roshanaei, G. (2017). Fatigue Fracture Strength of Implant-Supported Full Contour Zirconia and Metal Ceramic Fixed Partial Dentures. Journal of Dentistry (Tehran, Iran), 14(3), 165–172. http://www.ncbi.nlm.nih.gov/pubmed/29167689%0Ahttp://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC5694850

  31. Weaver, J. D., Johnson, G. H., & Bales, D. J. (1991). Marginal adaptation of castable ceramic crowns. The Journal of Prosthetic Dentistry, 66(6), 747–753. https://doi.org/10.1016/0022-3913(91)90408-O

  32. Wettstein, F., Sailer, I., Roos, M., & Hämmerle, C. H. F. (2008). Clinical study of the internal gaps of zirconia and metal frameworks for fixed partial dentures. European Journal of Oral Sciences, 116(3). https://doi.org/10.1111/j.1600-0722.2008.00527.x

  33. Zhang, Y., Lee, J. J. W., Srikanth, R., & Lawn, B. R. (2013). Edge chipping and flexural resistance of monolithic ceramics. Dental Materials, 29(12), 1201–1208. https://doi.org/10.1016/j.dental.2013.09.004

bottom of page