Ethanol Extract of Pomelo Peel to Prevent Dental Caries in Extracted Teeth In-Vitro
top of page
Asian Institute of Research, Journal Publication, Journal Academics, Education Journal, Asian Institute
Asian Institute of Research, Journal Publication, Journal Academics, Education Journal, Asian Institute

Journal of Health and Medical Sciences

ISSN 2622-7258

Screen Shot 2018-08-12 at 1.24.09 AM.png
Screen Shot 2018-08-12 at 1.24.02 AM.png
Screen Shot 2018-08-12 at 1.23.57 AM.png
Screen Shot 2018-08-12 at 1.23.52 AM.png
crossref
doi
open access

Published: 09 December 2023

Ethanol Extract of Pomelo Peel to Prevent Dental Caries in Extracted Teeth In-Vitro

I Made Budi Artawa, I Gede Surya Kencana, I Nyoman Gejir

Poltekkes Kemenkes Denpasar, Indonesia

journal of social and political sciences
pdf download

Download Full-Text Pdf

doi

10.31014/aior.1994.06.04.290

Pages: 177-184

Keywords: Caries Teeth, Citrus Maxima, In Vitro Extracted Teeth, Pomelo Peel Extract, S. Mutans

Abstract

Dental caries is caused by the bacteria Streptococcus mutans. It is said that S. mutans can be reduced by the action of toothbrushing with mouthwashes. However, chemical mouthwashes bring adverse effect on the teeth such as tooth staining, microbiota ecology changes, and mucosa lesions. Natural mouthwashes have become the alternative solution. For instance, the ability of ethanol extract from Pomelo peel to inhibit the growth of S. mutans bacteria can be used to prevent dental caries. This study aims to determine the effectiveness of ethanol extract of Pomelo peel in preventing dental caries in extracted teeth in vitro. The research design was quasi-experimental with a number of samples is 30. Six treatments were carried out, each treatment consisted of five samples consisting of bacterial culture, ethanol extract of Pomelo peel 20%, 50%, 75%, negative control, and positive control plus teeth and substrate. Observations were recorded and analyzed using Univariate Multi-Way Analysis of Variance (ANOVA). The results of the study showed that the occurrence of dental caries after receiving ethanol extract treatment from Pomelo peel is at least in the 75% concentration group, namely 0 teeth (0%), at the 25% concentration, all teeth experienced caries (100%), and in the 50% concentration group, dental caries occurred 67%. Statistically, grapefruit peel extract with a concentration of 75% significantly inhibits the process of tooth decay in conditions of white spots, black spots and holes. In conclusion, 75% concentration of Pomelo peel ethanol extract is effective in preventing dental caries in extracted teeth in-vitro.

References

  1. Ampawong,  S., & Aramwit, P. (2017). A study of long-term stability and antimicrobial  activity of chlorhexidine, polyhexamethylene biguanide, and silver  nanoparticle incorporated in sericin-based wound dressing. Journal of  Biomaterials Science, Polymer Edition, 28(13), 1286–1302.  https://doi.org/10.1080/09205063.2017.1321339

  2. Boustedt,  K., Dahlgren, J., Twetman, S., & Roswall, J. (2020). Tooth brushing habits  and prevalence of early childhood caries: a prospective cohort study. European  Archives of Paediatric Dentistry, 21(1), 155–159.  https://doi.org/10.1007/s40368-019-00463-3

  3. Cieplik,  F., Jakubovics, N. S., Buchalla, W., Maisch, T., Hellwig, E., & Al-Ahmad,  A. (2019). Resistance toward chlorhexidine in oral bacteria-is there cause for  concern? In Frontiers in Microbiology (Vol. 10, Issue MAR). Frontiers  Media S.A. https://doi.org/10.3389/fmicb.2019.00587

  4. Dianawati,  N., Setyarini, W., Widjiastuti, I., Ridwan, R. D., & Kuntaman, K. (2020).  The distribution of Streptococcus mutans and Streptococcus sobrinus in  children with dental caries severity level. Dental Journal, 53(1),  36–39. https://doi.org/10.20473/j.djmkg.v53.i1.p36-39

  5. Erturk-Avunduk,  A. S. T., Aksu, S., & Delikan, E. (2021). The Effects of Mouthwashes on the Color Stability of  Resin-Based Restorative Materials. Odovtos - International Journal of  Dental Sciences, 23(1), 91–102.  https://doi.org/10.15517/IJDS.2020.43004

  6. Hidanah,  S., Sabdoningrum, E. K., Rachmawati, K., Soeharsono, S., Trika, G. G. A.,  Huda, M. A., & Widiati, T. P. (2022). The activity of Meniran (Phyllanthus  niruri Linn.) extract on Salmonella pullorum infected broilers. Veterinary  World, 15(5), 1373–1382.  https://doi.org/10.14202/vetworld.2022.1373-1382

  7. Hoang, T.  P. N., Ghori, M. U., & Conway, B. R. (2021). Topical antiseptic  formulations for skin and soft tissue infections. In Pharmaceutics (Vol. 13, Issue 4). MDPI. https://doi.org/10.3390/pharmaceutics13040558

  8. Huang, W.,  Wang, Y., Tian, W., Cui, X., Tu, P., Li, J., Shi, S., & Liu, X. (2022).  Biosynthesis Investigations of Terpenoid, Alkaloid, and Flavonoid  Antimicrobial Agents Derived from Medicinal Plants. Antibiotics, 11(10),  1380. https://doi.org/10.3390/antibiotics11101380

  9. Kementerian  Kesehatan RI. (2018). Hasil Utama Riskesdas 2018 (Indonesia Basic Health  Research). https://doi.org/10.1177/109019817400200403

  10. Lee, G. J.,  Lee, S. Y., Kang, N. G., & Jin, M. H. (2022). A multi-faceted comparison of phytochemicals in seven  citrus peels and improvement of chemical composition and antioxidant activity  by steaming. LWT, 160. https://doi.org/10.1016/j.lwt.2022.113297

  11. Lemos, J.  A., Palmer, S. R., Zeng, L., Wen, Z. T., Kajfasz, J. K., Freires, I. A.,  Abranches, J., & Brady, L. J. (2019). The Biology of Streptococcus mutans  . Microbiology Spectrum, 7(1).  https://doi.org/10.1128/microbiolspec.gpp3-0051-2018

  12. Ngajow, M.,  Abidjulu, J., & Kamu, V. S. (2013). Pengaruh Antibakteri Ekstrak Kulit  Batang Matoa (Pometia pinnata) terhadap Bakteri Staphylococcus aureus secara  In vitro (Antibacterial Effect of Matoa (Pometia pinnata) Bark Extract on  Staphylococcus aureus Bacteria in vitro). Jurnal MIPA UNSRAT , 2(2),  128–132.

  13. Nirwana,  I., Rianti, D., Soekartono, R. H., Listyorini, Rr. D., & Basuki, D. P.  (2018). Antibacterial activity of fig leaf (Ficus carica Linn.) extract  against Enterococcus faecalis and its cytotoxicity effects on fibroblast  cells. Veterinary World, 11(3), 342–347.  https://doi.org/10.14202/vetworld.2018.342-347

  14. Ozdemir, D.  (2013). Dental Caries : The Most Common Disease Worldwide and Preventive  Strategies. International Journal of Biology, 5(4), 55–61. https://doi.org/10.5539/ijb.v5n4p55

  15. Poppolo  Deus, F., & Ouanounou, A. (2022). Chlorhexidine in Dentistry:  Pharmacology, Uses, and Adverse Effects. In International Dental Journal (Vol. 72, Issue 3, pp. 269–277). Elsevier Inc.  https://doi.org/10.1016/j.identj.2022.01.005

  16. Purwantiningsih,  T. I., Suranindyah, Y. Y., & Widodo, D. (2014). Activity of Phenol of  Morinda Citrifolia as Natural Antibacteria to Inhibit The Growth of  Mastitis-Associated Bacteria. Buletin Peternakan, 38(1), 59–64.

  17. Rahayu, I.  D., Widodo, W., Prihartini, I., & Winaya, A. (2019). Antibacterial  activity of ethanolic extracts from Zingiber zerumbet rhizome against  Salmonella spp. Biodiversitas, 20(11), 3322–3327.  https://doi.org/10.13057/biodiv/d201127

  18. Rifa’i, R.  A. R., Andayani, S., & Fadjar, M. (2023). Antibacterial Ability of  Rhizophora mucronata Leaf Extract Against Bacterial Infections of Edwardsiella  tarda. The Journal of Experimental Life Science, 13(1), 12–16.

  19. Sahoo, S.  R., Nandini, D., Basandi, P. S., Selvamani, M., & Donoghue, M. (2022). A  comparison of pre-and postbreakfast tooth brushing in caries prevention  through the estimation of Streptococcus mutans counts: A prospective clinical  and microbiological study. Journal of Microscopy and Ultrastructure, 10(4),  168–173. https://doi.org/10.4103/jmau.jmau_90_21

  20. Shehata, M.  G., Awad, T. S., Asker, D., El Sohaimy, S. A., Abd El- Aziz, N. M., &  Youssef, M. M. (2021). Antioxidant and antimicrobial activities and  UPLC-ESI-MS/MS polyphenolic profile of sweet orange peel extracts. Current  Research in Food Science, 4, 326–335.  https://doi.org/10.1016/j.crfs.2021.05.001

  21. Takenaka,  S., Sotozono, M., Ohkura, N., & Noiri, Y. (2022). Evidence on the Use of  Mouthwash for the Control of Supragingival Biofilm and Its Potential Adverse  Effects. Antibiotics, 11(6).  https://doi.org/10.3390/antibiotics11060727

  22. Tamsin, A.  H. N., Batubara, I., Ridwan, T., Trivadila, & Arifin Aziz, S. (2023).  Phenolic and Flavonoid Production, Phytochemical Profile, and Antioxidant  Capacity of Adenostemma Platyphyllum at Different Concentrations of Hydroponic  Solutions. Jurnal Tumbuhan Obat Indonesia, 16(1), 59–70.

  23. Tartaglia,  G. M., Tadakamadla, S. K., Connelly, S. T., Sforza, C., & Martín, C.  (2019). Adverse events associated with home use of mouthrinses: a systematic  review. In Therapeutic Advances in Drug Safety (Vol. 10). SAGE  Publications Ltd. https://doi.org/10.1177/2042098619854881

  24. Tungmunnithum,  D., Thongboonyou, A., Pholboon, A., & Yangsabai, A. (2018). Flavonoids and  Other Phenolic Compounds from Medicinal Plants for Pharmaceutical and Medical  Aspects: An Overview. Medicines, 5(3), 93.  https://doi.org/10.3390/medicines5030093

  25. Vitt, A.,  Sofrata, A., Slizen, V., Sugars, R. V, Gustafsson, A., Gudkova, E. I., Kazeko,  L. A., Ramberg, P., & Buhlin, K. (2015). Antimicrobial activity of  polyhexamethylene guanidine phosphate in comparison to chlorhexidine using the  quantitative suspension method. Annals of Clinical Microbiology and  Antimicrobials, 14(1), 1–9.  https://doi.org/10.1186/s12941-015-0097-x

  26. Warreth, A.  (2023). Dental Caries and Its Management. International Journal of  Dentistry, 2023, 1–15. https://doi.org/10.1155/2023/9365845

bottom of page