Evaluation of Discoloration After Thermocycling in CAD/CAM Blocks of Different Thicknesses
top of page
Asian Institute of Research, Journal Publication, Journal Academics, Education Journal, Asian Institute
Asian Institute of Research, Journal Publication, Journal Academics, Education Journal, Asian Institute

Journal of Health and Medical Sciences

ISSN 2622-7258

Screen Shot 2018-08-12 at 1.24.09 AM.png
Screen Shot 2018-08-12 at 1.24.02 AM.png
Screen Shot 2018-08-12 at 1.23.57 AM.png
Screen Shot 2018-08-12 at 1.23.52 AM.png
crossref
doi
open access

Published: 15 April 2022

Evaluation of Discoloration After Thermocycling in CAD/CAM Blocks of Different Thicknesses

Recep Kara

Istanbul Aydın University, Turkey

journal of social and political sciences
pdf download

Download Full-Text Pdf

doi

10.31014/aior.1994.05.02.209

Pages: 35-43

Keywords: Computer-Aided Design, Prosthesis Coloring, Dental Materials

Abstract

The study aims to evaluate the color of CAD/CAM blocks of different thicknesses after thermocycling as in-vitro. A total of 180 samples (n=10) were prepared in 2 thicknesses (0.5mm, and 1.0 mm) from various CAD/CAM blocks of different structures (Katana UTML, Prettau® 4 Anterior® Dispersive, IPS e-max Cad, Vita YZ-XT, Vita YZ-T, Vita Suprinity PC, Vita Enamic, Shofu HC, G-Ceram). The color values of the samples (L*, a*, b*) were measured before and after thermocycling. The discoloration (ΔE) data obtained were statistically compared with two way-ANOVA, Tukey HSD posthoc tests, and Paired Sample T-Test (p<0.05). The highest average discoloration was found in the Katana group (ΔE=3.07) with a thickness of 1 mm, while the lowest was found in the Shofu HC group (ΔE=0.49) with a thickness of 0.5 mm. In contrast, the ΔE value was significantly different in samples with a thickness of 1 mm and 0.5 mm (p<0.05), there was no difference in the ΔE values in the groups in themselves. Discoloration values of test materials depending on thickness varied, but the difference of thickness in the same material did not affect the color change. All the color changes were clinically accepted.

References

  1. Acar, O., Yilmaz, B., Altintas, S. H., Chandrasekaran, I. & Johnston, W. M. (2016). Color stainability of CAD/CAM and nanocomposite resin materials. The Journal of Prosthetic Dentistry, 115(1), 71–75. https://doi.org/10.1016/j.prosdent.2015.06.014

  2. Albuquerque, P. P. A. C., Moreira, A. D. L., Moraes, R. R., Cavalcante, L. M. & Schneider, L. F. J. (2013). Color stability, conversion, water sorption and solubility of dental composites formulated with different photoinitiator systems. Journal of Dentistry, 41(SUPPL. 3). https://doi.org/10.1016/j.jdent.2012.11.020

  3. Alp, G., Subasi, M. G., Johnston, W. M. & Yilmaz, B. (2018). Effect of surface treatments and coffee thermocycling on the color and translucency of CAD-CAM monolithic glass-ceramic. Journal of Prosthetic Dentistry, 120(2). https://doi.org/10.1016/j.prosdent.2017.10.024

  4. Bagis, B. & Turgut, S. (2013). Optical properties of current ceramics systems for laminate veneers. Journal of Dentistry, 41(SUPPL. 3). https://doi.org/10.1016/j.jdent.2012.11.013

  5. Belli, R., Wendler, M., de Ligny, D., Cicconi, M. R., Petschelt, A., Peterlik, H. & Lohbauer, U. (2017). Chairside CAD/CAM materials. Part 1: Measurement of elastic constants and microstructural characterization. Dental Materials, 33(1). https://doi.org/10.1016/j.dental.2016.10.009

  6. Chu, F. C. S., Chow, T. W. & Chai, J. (2007). Contrast ratios and masking ability of three types of ceramic veneers. Journal of Prosthetic Dentistry, 98(5). https://doi.org/10.1016/S0022-3913(07)60120-6

  7. Conrad, H. J., Seong, W. J. & Pesun, I. J. (2007). Current ceramic materials and systems with clinical recommendations: A systematic review. Journal of Prosthetic Dentistry, 98(5), 389–404. https://doi.org/10.1016/S0022-3913(07)60124-3

  8. De Oliveira, A. L. B. M., Botta, A. C., Campos, J. Á. D. B. & Garcia, P. P. N. S. (2014). Effects of immersion media and repolishing on color stability and superficial morphology of nanofilled composite resin. Microscopy and Microanalysis, 20(4). https://doi.org/10.1017/S1431927614001299

  9. Dede, D. Ö., Armaganci, A., Ceylan, G., Çankaya, S. & Çelk, E. (2013). Influence of abutment material and luting cements color on the final color of all ceramics. Acta Odontologica Scandinavica, 71(6). https://doi.org/10.3109/00016357.2013.777114

  10. Douglas, R. D. (1997). Precision of in vivo colorimetric assessments of teeth. Journal of Prosthetic Dentistry, 77(5). https://doi.org/10.1016/S0022-3913(97)70137-9

  11. Egilmez, F., Ergun, G., Cekic-Nagas, I., Vallittu, P. K. & Lassila, L. V. J. (2018). Does artificial aging affect mechanical properties of CAD/CAM composite materials. Journal of Prosthodontic Research, 62(1). https://doi.org/10.1016/j.jpor.2017.06.001

  12. Gajewski, V. E. S., Pfeifer, C. S., Fróes-Salgado, N. R. G., Boaro, L. C. C. & Braga, R. R. (2012). Monomers used in resin composites: degree of conversion, mechanical properties and water sorption/solubility. Brazilian Dental Journal, 23(5), 508–514. https://doi.org/10.1590/s0103-64402012000500007

  13. Guess, P. C., Kuliš, A., Witkowski, S., Wolkewitz, M., Zhang, Y. & Strub, J. R. (2008). Shear bond strengths between different zirconia cores and veneering ceramics and their susceptibility to thermocycling. Dental Materials, 24(11). https://doi.org/10.1016/j.dental.2008.03.028

  14. Gürdal, I., Atay, A., Eichberger, M., Cal, E., Üsümez, A. & Stawarczyk, B. (2018). Color change of CAD-CAM materials and composite resin cements after thermocycling. Journal of Prosthetic Dentistry, 120(4). https://doi.org/10.1016/j.prosdent.2017.12.003

  15. Harianawala, H. H., Kheur, M. G., Apte, S. K., Kale, B. B., Sethi, T. S. & Kheur, S. M. (2014). Comparative analysis of transmittance for different types of commercially available zirconia and lithium disilicate materials. Journal of Advanced Prosthodontics, 6(6). https://doi.org/10.4047/jap.2014.6.6.456

  16. Jeong, H. Y., Lee, H. H. & Choi, Y. S. (2018). Mechanical properties of hybrid computer-aided design/computer-aided manufacturing (CAD/CAM) materials after aging treatments. Ceramics International, 44(16). https://doi.org/10.1016/j.ceramint.2018.07.146

  17. Jiang, L., Liao, Y., Wan, Q. & Li, W. (2011). Effects of sintering temperature and particle size on the translucency of zirconium dioxide dental ceramic. Journal of Materials Science: Materials in Medicine, 22(11). https://doi.org/10.1007/s10856-011-4438-9

  18. Karaokutan, I., Yilmaz Savas, T., Aykent, F. & Ozdere, E. (2016). Color Stability of CAD/CAM Fabricated Inlays after Accelerated Artificial Aging. Journal of Prosthodontics, 25(6). https://doi.org/10.1111/jopr.12353

  19. Kim, H. K., Kim, S. H., Lee, J. B., Han, J. S., Yeo, I. S. & Ha, S. R. (2016). Effect of the amount of thickness reduction on color and translucency of dental monolithic zirconia ceramics. Journal of Advanced Prosthodontics, 8(1). https://doi.org/10.4047/jap.2016.8.1.37

  20. Lauvahutanon, S., Shiozawa, M., Takahashi, H., Iwasaki, N., Oki, M., Finger, W. J. & Arksornnukit, M. (2017). Discoloration of various CAD/CAM blocks after immersion in coffee. Restorative Dentistry & Endodontics, 42(1), 9. https://doi.org/10.5395/rde.2017.42.1.9

  21. Matsuzaki, F., Sekine, H., Honma, S., Takanashi, T., Furuya, K., Yajima, Y. & Yoshinari, M. (2015). Translucency and flexural strength of monolithic translucent zirconia and porcelain-layered zirconia. Dental Materials Journal, 34(6). https://doi.org/10.4012/dmj.2015-107

  22. McLean, J. W. & Hughes, T. H. (1965). The reinforcement of dental porcelain with ceramic oxides. British Dental Journal, 119(6).

  23. Nogueira, A. D. & Della Bona, A. (2013). The effect of a coupling medium on color and translucency of CAD-CAM ceramics. Journal of Dentistry, 41(SUPPL. 3). https://doi.org/10.1016/j.jdent.2013.02.005

  24. O’Keefe, K. L., Pease, P. L. & Herrin, H. K. (1991). Variables affecting the spectral transmittance of light through porcelain veneer samples. The Journal of Prosthetic Dentistry, 66(4). https://doi.org/10.1016/0022-3913(91)90501-M

  25. Sen, N. & Us, Y. O. (2018). Mechanical and optical properties of monolithic CAD-CAM restorative materials. Journal of Prosthetic Dentistry, 119(4). https://doi.org/10.1016/j.prosdent.2017.06.012

  26. Terzioğlu, H., Yilmaz, B. & Yurdukoru, B. (2009). The effect of different shades of specific luting agents and IPS empress ceramic thickness on overall color. The International Journal of Periodontics & Restorative Dentistry, 29(5). https://doi.org/10.11607/prd.00.0882

  27. Turgut, S. & Bagis, B. (2011). Colour stability of laminate veneers: An in vitro study. Journal of Dentistry, 39(SUPPL. 3). https://doi.org/10.1016/j.jdent.2011.11.006

  28. Turgut, S., Bagis, B. & Ayaz, E. A. (2014). Achieving the desired colour in discoloured teeth, using leucite-based cad-cam laminate Systems. Journal of Dentistry, 42(1). https://doi.org/10.1016/j.jdent.2013.10.018

  29. Turgut, S., Bagis, B., Turkaslan, S. S. & Bagis, Y. H. (2014). Effect of Ultraviolet Aging on Translucency of Resin-Cemented Ceramic Veneers: An In Vitro Study. Journal of Prosthodontics, 23(1). https://doi.org/10.1111/jopr.12061

  30. Ueda, K., Güth, J. F., Erdelt, K., Stimmelmayr, M., Kappert, H. & Beuer, F. (2015). Light transmittance by a multi-coloured zirconia material. Dental Materials Journal, 34(3). https://doi.org/10.4012/dmj.2014-238

  31. Zarone, F., Russo, S. & Sorrentino, R. (2011). From porcelain-fused-to-metal to zirconia: Clinical and experimental considerations. Dental Materials, 27(1), 83–96. https://doi.org/10.1016/j.dental.2010.10.024

  32. Zhang, Y., Lee, J. J. W., Srikanth, R. & Lawn, B. R. (2013). Edge chipping and flexural resistance of monolithic ceramics. Dental Materials, 29(12), 1201–1208. https://doi.org/10.1016/j.dental.2013.09.004

bottom of page