Kefir as a Prevention of Arsenic-mediated Toxicity in Uterine Female Rats
top of page
Asian Institute of Research, Journal Publication, Journal Academics, Education Journal, Asian Institute
Asian Institute of Research, Journal Publication, Journal Academics, Education Journal, Asian Institute

Journal of Health and Medical Sciences

ISSN 2622-7258

Screen Shot 2018-08-12 at 1.24.09 AM.png
Screen Shot 2018-08-12 at 1.24.02 AM.png
Screen Shot 2018-08-12 at 1.23.57 AM.png
Screen Shot 2018-08-12 at 1.23.52 AM.png
crossref
doi
open access

Published: 20 December 2021

Kefir as a Prevention of Arsenic-mediated Toxicity in Uterine Female Rats

Sabatina Windyaningrum, Tri Yudani Mardining Raras, Bambang Rahardjo, Rose Khasana Dewi

Brawijaya University, Indonesia

journal of social and political sciences
pdf download

Download Full-Text Pdf

doi

10.31014/aior.1994.04.04.197

Pages: 81-90

Keywords: Arsenic, ROS, Kefir, Antioxidant, Endometrium, Estrogen Receptor Alpha

Abstract

Background: kefir is a fermented milk product that demonstrates numerous health benefits including antioxidant and immunomodulatory. Aim: to study the protective effect kefir on the expression of estrogen receptor alpha (ERα) in endometrial stromal cells and endometrial thickness on female rats that were exposed to arsenic. Methods: twenty-five female Wistar rats (Rattus norvegicus) were divided into five groups (CRL, As, T1, T2, T3). Control group (given a normal diet), As group (given the normal diet and exposed to arsenic trioxide 2 mg/kgBW/day). The T1; T2; T3 were exposed to arsenic trioxide 2 mg/kgBW/day and treated with different doses of kefir (1.25; 2.5; and 5 mL/kgBW/day, respectively) for 35 days. The rats of group As treated with arsenic trioxide only and group CRL served as control with normal feed in water. Cytological samples were taken after 35 days of treatment and examined every day to see the rat oestrus phase, and the proestrus phase of the oestrous cycle was chosen for termination. Uterine tissue fixed in 10% neutral buffered formalin for tissue preparation. ERα expression in endometrial stromal cells was analized using immunohistochemistry method, endometrial thickness was observed using histopathological methods. Results: significant reduction of ERα expression in endometrial stromal cells and endometrial thickness in female rats exposed to arsenic were observed in groups on treated rats (p ≤ 0.000; 0.009, respectively). Conclusion: the administration of kefir in female Wistar rats exposed to arsenic had shown significantly differences on ERα expressions and endometrial thickness. The smallest dose of kefir (1.25 mL/kgBW/day) could increase ERα expression and endometrial thickness in female Wistar rats with arsenic exposure. Therefore kefir has protective effect related to female reproductive system.

References

  1. Akram, Z., Jalali, S., Shami, S. A., Ahmad, L., Batool, S., & Kalsoom, O. (2010). Adverse effects of arsenic exposure on uterine function and structure in female rat. Experimental and Toxicologic Pathology, 62(4), 451–459. https://doi.org/10.1016/j.etp.2009.07.008

  2. ATSDR. (2007). Toxicological Profile for Arsenic. https://doi.org/10.1088/0004-6256/139/6/2557

  3. Bae-Jump, V. L., Chunxiao Zhou, Boggess, J. F., & Gehrig, P. A. (2008). Arsenic trioxide (As2O3) inhibits expression of estrogen receptor-alpha through regulation of the mitogen-activated protein kinase (MAPK) pathway in endometrial cancer cells. Reproductive Sciences, 15(10), 1011–1017. https://doi.org/10.1177/1933719108324134

  4. Baradwan, S., Shafi, D., Baradwan, A., Bashir, M. S., & Al-Jaroudi, D. (2018). The effect of endometrial thickness on pregnancy outcome in patients with asherman’s syndrome post-hysteroscopic adhesiolysis. International Journal of Women’s Health, 10, 77–82. https://doi.org/10.2147/IJWH.S151283

  5. Bouayed, J., & Bohn, T. (2010). Exogenous antioxidants - Double-edged swords in cellular redox state: Health beneficial effects at physiologic doses versus deleterious effects at high doses. Oxidative Medicine and Cellular Longevity, Vol. 3, pp. 228–237. https://doi.org/10.4161/oxim.3.4.12858

  6. Bromer, J. G., Aldad, T. S., & Taylor, H. S. (2009). Defining the proliferative phase endometrial defect. Fertility and Sterility,91(3), 698–704. https://doi.org/10.1016/j.fertnstert.2007.12.066

  7. Chatterjee, A., & Chatterji, U. (2010). Arsenic abrogates the estrogen-signaling pathway in the rat uterus. Reproductive Biology and Endocrinology, 8, 80. https://doi.org/10.1186/1477-7827-8-80

  8. Chen, Z., Shi, J., Yang, X., Nan, B., Liu, Y., & Wang, Z. (2015). Chemical and physical characteristics and antioxidant activities of the exopolysaccharide produced by Tibetan kefir grains during milk fermentation. International Dairy Journal, 43, 15–21. https://doi.org/10.1016/j.idairyj.2014.10.004

  9. Choi, E. K., Yeo, J. S., Park, C. Y., Na, H. in, Lim, J. a., Lee, J. E., … Kwak, K. H. (2015). Inhibition of reactive oxygen species downregulates the MAPK pathway in rat spinal cord after limb ischemia reperfusion injury. International Journal of Surgery, 22, 74–78. https://doi.org/10.1016/j.ijsu.2015.08.016

  10. Cunningham, F. G., Leveno, K. J., Bloom, S. L., Hauth, J. C., Rouse, D. J., & Spong, C. Y. (2013). Obstetri Williams Volume 1. In EGC(23rd ed.). https://doi.org/10.1097/00001888-193609000-00027

  11. Deeseenthum, S., Luang-In, V., John, S. M., Chottanom, P., & Chunchom, S. (2018). Effects of kefir fermentation on antioxidation activities (in vitro) and antioxidative stress (in vivo) of three thai rice milk varieties prepared by ultrasonication technique. Pharmacognosy Journal,10(5), 1061–1066. https://doi.org/10.5530/pj.2018.5.179

  12. Deyhoul, N., Mohamaddoost, T., & Hosseini, M. (2017). Infertility-related risk factors: A systematic review. International Journal of Women’s Health and Reproduction Sciences, 5(1), 24–29. https://doi.org/10.15296/ijwhr.2017.05

  13. Elhussein, O. G., Ahmed, M. A., Suliman, S. O., Yahya,  leena I., & Adam, I. (2019). Epidemiology of infertility and characteristics of infertile couples requesting assisted reproduction in a low-resource setting in Africa, Sudan. Fertility Research and Practice, 5(1), 7–11. https://doi.org/10.1186/s40738-019-0060-1

  14. Fahmy, H. A., & Ismail, A. F. M. (2015). Gastroprotective effect of kefir on ulcer induced in irradiated rats. Journal of Photochemistry and Photobiology B: Biology, 144, 85–93. https://doi.org/10.1016/j.jphotobiol.2015.02.009

  15. Farnworth, E. R., & Mainville, I. (2008). Kefir - A Fermented Milk Product. In E. R. Farnworth (Ed.), Handbook of Fermented Functional Foods, Second Edition(pp. 89–127). https://doi.org/10.1201/9780203009727.ch1

  16. Flora, S. J. S. (2011). Arsenic-induced oxidative stress and its reversibility. Free Radical Biology and Medicine, 51(2), 257–281. https://doi.org/10.1016/j.freeradbiomed.2011.04.008

  17. Huff, M. O., Todd, S. L., Smith, A. L., Elpers, J. T., Smith, A. P., Murphy, R. D., … Klinge, C. M. (2016). Arsenite and cadmium activate MAPK/ERK via membrane estrogen receptors and g-protein coupled estrogen receptor signaling in human lung adenocarcinoma cells. Toxicological Sciences, 152(1), 62–71. https://doi.org/10.1093/toxsci/kfw064

  18. Kesenkas, H., Dinkcİ, N., Seckin, K., Kinika, Ö., & Gonc, S. (2011). Antioxidant Properties of Kefir Produced from Different Cow and Soy Milk Mixtures. Crop and Pasture Science, 2(4), 291–296. https://doi.org/10.1501/Tarimbil

  19. Khatun, S., Maity, M., Perveen, H., Dash, M., & Chattopadhyay, S. (2018).  Spirulina platensis ameliorates arsenic-mediated uterine damage and ovarian steroidogenic disorder . Facets, 3(1), 736–753. https://doi.org/10.1139/facets-2017-0099

  20. Kovacs, P., Matyas, S., Boda, K., & Kaali, S. G. (2003). The effect of endometrial thickness on IVF / ICSI outcome. 18(11), 2337–2341. https://doi.org/10.1093/humrep/deg461

  21. Laily, N. A. (2020). Pengaruh Kefir terhadap Kadar Malondialdehyde dan Jumlah Folikel Antral Ovarium Tikus Betina (Rattus norvegicus) yang Dipapar Arsen. Brawijaya University, Malang, Indonesia.

  22. Lei, H. L., Wei, H. J., Ho, H. Y., Liao, K. W., & Chien, L. C. (2015). Relationship between risk factors for infertility in women and lead, cadmium, and arsenic blood levels: A cross-sectional study from Taiwan. BMC Public Health, 15(1), 1–11. https://doi.org/10.1186/s12889-015-2564-x

  23. Liu, J. R., Chen, M. J., & Lin, C. W. (2005). Antimutagenic and antioxidant properties of milk-kefir and soymilk-kefir. Journal of Agricultural and Food Chemistry, 53(7), 2467–2474. https://doi.org/10.1021/jf048934k

  24. Liu, J. R., Lin, Y. Y., Chen, M. J., Chen, L. J., & Lin, C. W. (2005). Antioxidative activities of kefir. Asian-Australasian Journal of Animal Sciences, 18(4), 567–573. https://doi.org/10.5713/ajas.2005.567

  25. Llewellyn, B. D. (2013). How to Prepare Histology Slides. Retrieved 27 November 2021, from https://www.ivyroses.com/HumanBody/Histology/How-to-Prepare-Histology-Slides.php

  26. Lushchak, V. I. (2014). Free radicals, reactive oxygen species, oxidative stress and its classification. Chemico-Biological Interactions, 224(October), 164–175. https://doi.org/10.1016/j.cbi.2014.10.016

  27. Prado, M. R., Blandón, L. M., Vandenberghe, L. P. S., Rodrigues, C., Castro, G. R., Thomaz-Soccol, V., & Soccol, C. R. (2015). Milk kefir: Composition, microbial cultures, biological activities, and related products. Frontiers in Microbiology, 6(OCT), 1–10. https://doi.org/10.3389/fmicb.2015.01177

  28. Radhouani, H., Gonçalves, C., Maia, F. R., Oliveira, J. M., & Reis, R. L. (2018a). Biological performance of a promising Kefiran-biopolymer with potential in regenerative medicine applications: a comparative study with hyaluronic acid. Journal of Materials Science: Materials in Medicine, 29(8), 1–10. https://doi.org/10.1007/s10856-018-6132-7

  29. Radhouani, H., Gonçalves, C., Maia, F. R., Oliveira, J. M., & Reis, R. L. (2018b). Kefiran biopolymer: Evaluation of its physicochemical and biological properties. Journal of Bioactive and Compatible Polymers, 33(5), 461–478. https://doi.org/10.1177/0883911518793914

  30. Rao, C. V., Pal, S., Mohammed, A., Farooqui, M., Doescher, M. P., Asch, A. S., & Yamada, H. Y. (2017). Biological effects and epidemiological consequences of arsenic exposure, and reagents that can ameliorate arsenic damage in vivo. Oncotarget, 8(34), 57605–57621. https://doi.org/10.18632/oncotarget.17745

  31. Raras, T. Y. M., Hidayati, N., & Wardhani, S. O. (2021). High doses of kefir accelerate lung-injury progression in bleomycin-induced pneumonitis in rats. Jundishapur Journal of Natural Pharmaceutical Products,16(3). https://doi.org/10.5812/JJNPP.111882

  32. Rattan, S., Zhou, C., Chiang, C., Mahalingam, S., Brehm, E., & Flaws, J. A. (2017). Exposure to endocrine disruptors during adulthood: Consequences for female fertility. Journal of Endocrinology, 233(3), R109–R129. https://doi.org/10.1530/JOE-17-0023

  33. Repetto, M., Jimena Semprine, & Boveris, A. (2016). Lipid Peroxidation: Chemical Mechanism, Biological Implications and Analytical Determination. Intech, i, 1–30. https://doi.org/http://dx.doi.org/10.5772/57353

  34. Ronchetti, S. A., Bianchi, M. S., Duvilanski, B. H., & Cabilla, J. P. (2016). In Vivo and in Vitro Arsenic Exposition Induces Oxidative Stress in Anterior Pituitary Gland. International Journal of Toxicology, 35(4), 463–475. https://doi.org/10.1177/1091581816645797

  35. Singh, Z., Karthigesu, I. P., Singh, P., & Kaur, R. (2014). Use of malondialdehyde as a biomarker for assessing oxidative stress in different disease pathologies: A review. Iranian Journal of Public Health,43(3), 7–16.

  36. Slaoui, M., & Fiette, L. (2011). Histopathology Procedures : From Tissue Sampling to Histopathological Evaluation(pp. 69–82). pp. 69–82. Method Mol Biol.

  37. Son, Y., Cheong, Y.-K., Kim, N.-H., Chung, H.-T., Kang, D. G., & Pae, H.-O. (2011). Mitogen-Activated Protein Kinases and Reactive Oxygen Species: How Can ROS Activate MAPK Pathways? Journal of Signal Transduction, 2011, 1–6. https://doi.org/10.1155/2011/792639

  38. Strowitzki, T., Germeyer, A., Popovici, R., & von Wolff, M. (2006). The human endometrium as a fertility-determining factor. Human Reproduction Update, 12(5), 617–630. https://doi.org/10.1093/humupd/dml033

  39. Sun, H. J., Xiang, P., Luo, J., Hong, H., Lin, H., Li, H. B., & Ma, L. Q. (2016). Mechanisms of arsenic disruption on gonadal, adrenal and thyroid endocrine systems in humans: A review. Environment International,95, 61–68. https://doi.org/10.1016/j.envint.2016.07.020

  40. Tchounwou, P. B., Centeno, J. A., & Patlolla, A. K. (2004). Arsenic toxicity, mutagenesis, and carcinogenesis - A health risk assessment and management approach. Molecular and Cellular Biochemistry,255(1–2), 47–55. https://doi.org/10.1023/B:MCBI.0000007260.32981.b9

  41. WHO. (2018). Arsenic. Retrieved 8 January 2020, from https://www.who.int/news-room/fact-sheets/detail/arsenic

  42. Yilmaz-Ersan, L., Ozcan, T., Akpinar-Bayizit, A., & Sahin, S. (2016). The Antioxidative Capacity of Kefir Produced from Goat Milk. International Journal of Chemical Engineering and Applications, 7(1), 22–26. https://doi.org/10.7763/ijcea.2016.v7.535

bottom of page